以外源性抗氧化物與基因治療評估慢性腎衰竭動物與病患之氧化壓力

計畫類別：個別型計畫
計畫編號：
執行期間：92年08月01日至93年07月31日
執行單位：國立臺灣大學醫學院(附設醫院)醫學研究部

計畫主持人：鄭劍廷

報告類型：精簡報告
處理方式：本計畫可公開查詢

中華民國93年11月3日
外源性抗氧化物與基因治療評估慢性腎衰竭動物與病患之氧化壓力

計畫類別：□ 個別型計畫 □ 整合型計畫
計畫編號：NSC 92-□□□□□□□□□□□
執行期間：□□ 年 □ 月 □ 日至 □□ 年 □ 月 □□ 日

計畫主持人：鄭劍廷
共同主持人:
計畫參與人員：

成果報告類型 □依經費核定清單規定繳交 □ 精簡報告 □ 完整報告
本成果報告包括以下應繳交之附件：
□ 赴國外出差或研習心得報告一份
□ 赴大陸地區出差或研習心得報告一份
□ 出席國際學術會議心得報告及發表之論文各一份
□ 國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、
列管計畫及下列情形者外，得立即公開查詢
□ 涉及專利或其他智慧財產權，□ 一年 □ 二年後可公開查詢

執行單位：台大醫學院附設醫院醫學研究部

中華民國 □□年 □□月 □□日
中文摘要

Abstract

Objective: The effect of ascorbate treatment on apheresis-induced oxidative stress in uremic and dyslipidemic patients was evaluated.

Methods and Results: We developed a chemiluminescence-emission spectrum and high-performance liquid chromatography analysis to assess the effect of ascorbate supplement on plasma reactive oxygen species (ROS) scavenging activity and oxidized lipid/protein production in hyperlipidemic and uremic patients undergoing apheresis. Apheresis was efficient in reduction of atherogenic lipoproteins, complement, fibrinogen, soluble intercellular adhesion molecule-1, and oxidative parameters including phosphatidylcholine hydroperoxide (PCOOH), malonaldehyde, methylguanidine, and dityrosine. Apheresis itself, however, activated leukocytes to increase ROS activity, and reduced the plasma ROS scavenging activity. Ascorbate administration selectively diminished apheresis-enhanced H2O2 and inflammatory mediators such as TNF-α and monocyte chemoattractant protein-1. Chronically dyslipidemic and uremic patients undergoing biweekly apheresis plus ascorbate treatment had lower levels of C-reactive protein and PCOOH than did those without ascorbate treatment during a 6-month follow-up study period.

Conclusions: We demonstrate that apheresis with ascorbate treatment provides a therapeutic potential in reducing atherosclerotic risk via inhibition of H2O2-induced oxidative stress in patients with uremia or dyslipidemia.

Introduction

Patients with end-stage renal disease or hyperlipidemia suffer from a complex dyslipidemia consisting of both quantitative and qualitative abnormalities in serum lipoproteins (1). The highly atherogenic low-density lipoprotein (LDL) accumulates preferentially in hyperlipidemic patients who have nephropathy or are on hemodialysis treatment, and it exerts profound effects on the vasomotor response of blood vessels to various stimuli that closely mimic the vascular dysfunction associated with hypercholesterolemia and atherosclerosis in man. These alterations in lipoprotein composition not only passively accompany chronic renal disease, but also promote its progression and the development of atherosclerosis. Lipid-lowering therapy may have a beneficial role in normalizing vascular function and greatly decreasing the frequency of clinical events associated with atherosclerosis, combined with the ability of anti-oxidants to alleviate vasomotor disturbances in hypercholesterolemia and to slow the progression of atherosclerosis (2).

Hemodialysis or apheresis of the extracorporeal system is often used for removal of excessive toxins, metabolic products, and blood components (e.g., LDL) from patients with uremia or hyperlipidemia. The treatment is efficient in preventing fatal and nonfatal cardiovascular events in patients with these conditions (1-5). Nevertheless, the extracorporeal treatment *per se* is associated with increased production of reactive oxygen species (ROS) by granulocytes (polymorphonuclear neutrophils, PMNs) (4) and a reduction in the antioxidant defense (5). The increased oxidative stress can cause oxidation of biological macromolecules, including proteins and lipids (6,7).

The two major ROS generated from activated PMNs via the myeloperoxidase (MPO) system are hydrogen peroxide (H2O2) and hypochlorite (HOCl) (8), which can produce lipid peroxidation
products, malonaldehyde (MDA), and phosphatidylcholine hydroperoxide (PCOOH) (9,10) and protein oxidation products, dityrosine and methylguanidine, as indirect indicators of ROS and/or free-radical activity (11,12). Among these oxidized products, oxidized LDL (oxLDL) can increase the adhesion of monocytes to the endothelium and transformation of macrophages into foam cells, and impair endothelium-dependent vasorelaxation (13-15). These changes could lead to the development of atherosclerosis and coronary artery disease (16,17).

Ascorbate is a well-known ROS scavenger that can effectively prevent the initiation of lipid peroxidation and the formation of lipid peroxides (18). To minimize the oxidative stress of apheresis, we have considered administering ascorbate to the patients during the apheresis course. Our study showed that ascorbate administration selectively restored plasma ROS scavenging activity for H₂O₂, and resulted in lower plasma levels of oxidized lipids/proteins as compared to those in patients without ascorbate treatment. Apheresis with simultaneous ascorbate administration might be of clinical importance for preventing atherosclerotic disease in patients with hyperlipidemia or those undergoing chronic hemodialysis.

Methods

Human subjects

Forty-nine hyperlipidemic patients (19 women and 30 men; mean age, 49±11 years) and 39 uremic patients (16 women and 23 men; mean age, 52±11 years) were included in the study. The uremic patients have been continuously on treatment with hemodialysis with ultrapure and endotoxin-free dialysate. Plasma from 10 healthy subjects (3 women and 7 men; mean age, 45±12 years) was determined. The mean creatinine level was 1.0±0.1 mg/dL, 10.3±0.6 mg/dL, and 0.9±0.1 mg/dL for hyperlipidemic patients, uremic patients, and healthy volunteers, respectively. Among these 49 hyperlipidemic patients, 9 were given simvastatin (a hydroxymethylglutaryl-coenzyme A reductase inhibitor) 10 mg and 4 received probucol 1,000 mg per day. Uremic patients were not treated with statins or fibrates. No angiotensin-converting enzyme inhibitors or angiotensin II type-1 receptor blockers were prescribed in all the patients. Informed consent was obtained from all patients and volunteers. The permission for the clinical trial was approved by the Human Ethics Committee of the National Taiwan University Hospital.

Apheresis and ascorbate administration

Apheresis was performed by KM-8800 (Kurary Co., LTD., Osaka, Japan) with a double-filtration plasmapheresis procedure (Plasmacure PS-O6 and Evaflux 4A, Kuraray Medical INC., Okayama, Japan). Total blood volumes of 10.5±0.3 L, and 9.8±0.3 L were processed in the 2-hr plasmapheresis procedure for uremic and hyperlipidemic patients. Ascorbate (Tai-Yu Pharmaceutical, Taipei, Taiwan), prepared as 2.5 g in 150 mL of 5% albumin solution, was administered during the apheresis session.

Blood samples and biochemical analysis

Plasma was separated from ten milliliters of blood drawn from the antecubital vein before and at the end of apheresis by centrifugation at 1,500 ×g for 5 min at 4°C. Plasma total cholesterol (CHOE), triglycerides (TG), and high-density lipoprotein (HDL), LDL, and very low-density lipoprotein (VLDL) values were measured (19). The measurement of lipoprotein(a) [Lp(a)] was performed with a commercial LPA kit (#465360, Beckman Coulter-Array System, Denmark).

In addition, quantitative determination of fibrinogen levels in plasma was made by FIBRI-PREST® AUTOMATE (Diagnostica Stago, Asnieres-Sur-Seine, France). Plasma complement 3 (C3) and C4 were measured by use of C3 and C4 commercial kits (Beckman-Coulter Inc., Fullerton, CA), respectively. Quantification of TNF-α and soluble intercellular adhesion molecule-1 (sICAM-1) and monocyte chemoattractant protein-1 (MCP-1) was performed by use of ELISA kits (R&D Systems Inc., Minneapolis, MN, USA).
Measurement of specific plasma antioxidant activity

A test mixture of 0.03% H$_2$O$_2$ (or 0.012% NaOCl) and a chemiluminescence (CL)-emitting substance [i.e., luminol (5-amino-2,3-dihydro-1,4-phthalazinedione), Sigma, St. Louis, MO, USA] can emit CL signals which can be measured with a multiwavelength CL spectrum analyzer (CLA-SP2, Tohoku Electronic Ind. Co., Sendai, Japan) (9). The recorded CL signals from the test mixtures containing plasma were referred to as plasma “reference H$_2$O$_2$ counts” (pRH$_2$O$_2$) or plasma “reference HOCl counts” (pRHOCl). A higher pRH$_2$O$_2$ or pRHOCl indicated higher ROS activity or lower anti-oxidative activity (lower ROS scavenging ability), or both, in plasma.

In addition, the total antioxidant status (TAS) in 20 µl of plasma was measured with a TAS kit (Randox, San Francisco, CA) according to the manufacturer's instructions. Ascorbate content in deproteinized plasma was estimated by colorimetry using the L-Ascorbic Acid kits (Boehringer Mannheim, Mannheim, Germany).

Measurement of oxidized amino acid/protein products and lipid products

Two protein oxidation products, di-tirosine and methylguanidine, were measured. In the presence of H$_2$O$_2$, tyrosyl radicals generated by MPO can cross-link to give a fluorescent adduct, di-tirosine, which can be determined with a fluorometer (Hitachi F-2500, Tokyo, Japan) (11). The methylguanidine with fluorescent activity, as an indirect measure of hydroxyl radical activity, was measured as described previously (12).

Two lipid primary and secondary peroxidation products, PCOOH and MDA, were determined. The amounts of PCOOH were measured in duplicate by CL-high-performance liquid chromatography (CL-HPLC, Tohoku Electronic Ind. Co., Sendai, Japan) (9). MDA levels were assayed as previously described (20).

Measurements of ROS activity in PMNs as the primary source of ROS in plasma

Intracellular ROS activity of PMNs was analyzed with a FACScalibur flow cytometer (Becton Dickinson, San Jose, CA) after stained with 2',7'-dichlorofluorescin diacetate (DCF-DA, 5 μmol/L, Sigma) (21).

To determine the PMNs as the source of ROS in plasma, we isolated PMNs from patients with or without ascorbate treatment at various time points during apheresis. After centrifugation, PMNs (purity >95%) were washed and resuspended in RPMI 1640 medium containing 10% fetal serum at a density of 5 x 10^6 cells/ml at 37°C. The PMN suspension was immediately added to the luminol solution as described above, and CL signals were measured (22). The effect of intravenous ascorbate, oral simvastatin or probucol treatment on PMN CL signals was also evaluated. To determine the type of ROS derived from PMNs, we added superoxide dismutase (SOD, an O$_2^-$ scavenger, 30 units), catalase (a H$_2$O$_2$ scavenger), or epigallocatechin-3-gallate (EGCG, HOCl and H$_2$O$_2$ scavenger, 100 μg) to the PMNs (2 hr post apheresis)/RPMI suspension. We compared the CL signals with or without treatment (22).

To test whether ROS may be released into the culture medium, we isolated PMNs from patients 2 hr post apheresis and incubated the PMN in RPMI suspension containing 10% fetal calf serum for various times, and the RPMI medium after removal of PMNs was subjected to the CL assay (9).

C-reactive protein assay

Apheresis was administered biweekly for at least 6 months. Serums were collected for measurement of C-reactive protein (CRP) level (23). The serum CRP concentrations were determined with an autoanalyzer (Tectron U-240 Plus, Tokyo, Japan). The lower limit of detection of CRP was 0.3 mg/l. The study is intended to compare the effect of ascorbate treatment on a possible reduction of the known marker, CRP, associated with atherogenesis.
Statistical Analysis

All values are expressed as mean±SEM. Group comparisons with respect to values before apheresis between controls and patients were performed by unpaired t test. A within-group comparison among values before apheresis, after apheresis and after apheresis plus ascorbate was analyzed by a one-way ANOVA for repeated measures and by pair-wise multiple comparison (24) \(P<0.05 \) was considered to indicate statistical significance.

Results

Ascorbate, but not vitamin E, exerted potent antioxidant activity

Figure 1A shows a typical CL emission from \(\text{H}_2\text{O}_2 \) in a test mixture containing a plasma sample. The \(\text{H}_2\text{O}_2 \) CL with a wide emission wavelength region of 370-650 nm and an emission maximum (Emax) of 460 nm was expressed as RH\(_2\text{O}_2 \). Phosphate-buffered saline (PBS) (50 mM, pH 7.4) added to the test mixture was used as a background control. The background RH\(_2\text{O}_2 \) in the control (PBS) mixture was 550±40 counts. When plasma from healthy individuals was added, the RH\(_2\text{O}_2 \) decreased to 182±15 counts, indicating the presence of \(\text{H}_2\text{O}_2 \) scavenger activity in plasma (Fig. 1A). Ascorbate added to the test mixture revealed strong \(\text{H}_2\text{O}_2 \) scavenger activity in a dose-dependent manner, as shown by a nearly 70-80% reduction in RH\(_2\text{O}_2 \) (with ascorbate at \(>10^{-4} \) M, Figure 1B). Vitamin E had weaker \(\text{H}_2\text{O}_2 \) scavenger activity as compared to that for ascorbate. Both vitamins C and E did not seem to be effective scavengers for RH\(\text{OCl} \) (not shown).

Ascorbate reduced apheresis-enhanced plasma RH\(_2\text{O}_2 \) counts

We tested the antioxidant effects of plasma obtained from healthy controls and patients. The pRH\(_2\text{O}_2 \) values obtained from uremic and hyperlipidemic patients were higher than that for healthy controls. The pRH\(_2\text{O}_2 \) was further increased (up approx. 60-70%) in post-apheresis plasma in patients with uremia or hyperlipidemia, indicating oxidative stress accompanied by apheresis. With ascorbate, the pRH\(_2\text{O}_2 \) was reduced by 80%-93% as compared to that without ascorbate in the uremic and hyperlipidemic patients (Fig. 2A,B). The degrees of reduction in pRH\(_2\text{O}_2 \) by ascorbate were similar in the hyperlipidemic patients treated with simvastatin (90±3%, n=9), probucol (92±3%, n=4), and in patients without drug treatment (90±2%, n=36).

The TAS level was significantly decreased in the uremic or hyperlipidemic plasma when compared to normal plasma. Apheresis reduced the plasma TAS in uremic and hyperlipidemic plasma, and the reduction could be effectively reversed by ascorbate administration (Fig. 2E).

The pre-apheresis plasma ascorbate was 72±7, 29±3, and 59±7 µM in the controls, uremic, and hyperlipidemic patients, respectively. The plasma ascorbate was reduced by approximately 40% following apheresis. Apheresis plus ascorbate treatment elevated the plasma ascorbate concentration to 89±7 and 95±7 µM in uremic and hyperlipidemic patients, respectively.

Ascorbate only partly reduced apheresis-enhanced RH\(\text{OCl} \) counts

The HOCl CL has a wide emission wavelength region of 350-670 nm with an Emax of 520 nm. The RH\(\text{OCl} \) in the PBS was 10,200±680 counts. When control plasma was added, the pRH\(\text{OCl} \) was reduced to 836±74 counts (Fig. 2C). The pRH\(\text{OCl} \) values obtained from uremic and hyperlipidemic patients were higher than that for healthy controls. The pRH\(\text{OCl} \) values were increased by approximately 40% after apheresis in uremic and hyperlipidemic groups. Unlike the situation for \(\text{H}_2\text{O}_2 \), the increased pRH\(\text{OCl} \) associated with apheresis was not significantly reduced (<10%) by ascorbate administration (Fig. 2C,D).

Ascorbate reduced apheresis-induced ROS formation in PMNs

The percentage of intracellular ROS production of DCF-positive PMNs was 24.6±7.8% for apheresis patients with ascorbate treatment, compared with increased DCF-positive PMNs
(46.5±6.0%) for apheresis patients without ascorbate treatment. The percentage of DCF-positive PMNs obtained from patients prior to apheresis was 5 to 8%. The results indicated that the ROS in the dialysis membrane-activated PMNs increased, and that ascorbate could act as an ROS scavenger within activated PMNs.

In hyperlipidemic (n=13) and uremic patients (n=15), apheresis increased luminol-ROS activity from the activated PMNs. Ascorbate treatment could effectively suppress the enhanced PMN ROS formation (Fig. 3A). The augmented CL counts of activated PMNs were greatly inhibited by the \(\text{H}_2\text{O}_2 \) scavenger of catalase (67±9 %), and partially depressed by SOD (16±3 %) and EGCG (17±3 %), respectively (Fig. 3B). We also tested the ROS activity from the RPMI medium after removal of post-apheresic PMNs. An increase in RPMI CL counts was detected; indicating that the increased ROS from apheresis-activated PMNs may be released into RPMI medium (or plasma) (Fig. 3C). Ascorbate treatment depressed the enhanced ROS in medium.

We also evaluated whether the two drugs (simvastatin and probucol) may display significant in vivo anti-oxidant effect mimic with that of vitamin C. The post-apheresic PMN CL accounts was only slightly reduced in patients with simvastatin (n=5) or probucol (n=4) treatment, as compared with patients without treatment (Fig. 3A).

Effects of apheresis-induced oxidative stress on biochemical parameters

The pre-apheresis levels of CHOE, TG, LDL, VLDL, Lp(a), C3, C4, and fibrinogen were higher in the uremic and hyperlipidemic patients than those in the normal plasma. After apheresis, these parameters were reduced significantly by 40 to 60%; indicating a reduction of proteins/lipoproteins of various sizes during apheresis (Table 1). It was noteworthy that there was a significant reduction in the LDL/VLDL fraction after apheresis, i.e., by 50%-60% in uremic patients and 60%-74% in hyperlipidemic patients. A single apheresis course alone also efficiently reduced sICAM-1 (by 60%), but not MCP-1 and TNF-\(\alpha \), suggesting increased production of the latter two proteins during the 2-hr apheresis course. Ascorbate treatment effectively suppressed MCP-1 and TNF-\(\alpha \) production (Table 1).

Effect of apheresis on oxidized lipid and protein products

The levels of lipid-peroxidation products and protein/amino-acid oxidation products in healthy controls, and in uremic and hyperlipidemic patients before and after apheresis, are displayed in Figure 4. In uremic and hyperlipidemic patients, baseline levels of PCOOH, MDA, methylguanidine, and dityrosine were significantly higher than those in healthy controls, indicating accumulated oxidative stress in these pathologic conditions. Apheresis significantly decreased the levels of these oxidative products. With ascorbate administration, the levels of these oxidative markers, particularly the two lipid peroxidation products PCOOH and MDA, were reduced further.

The PCOOH level was positively correlated with RHOC1 and RH2O2 counts and was negatively correlated with the TAS level (Fig. 5). This indicates that measurements of RH2O2, RHOC1, and the TAS level reflect degrees of primary lipid peroxidation.

Long-term effect of apheresis with ascorbate on CRP level

We compared the CRP levels in two groups of uremic patients: ten patients with biweekly apheresis treatment and ten patients with biweekly apheresis plus ascorbate treatment. The two groups had a similar age distribution, clinical conditions, and blood chemistry including CRP levels before the study. Biweekly apheresis plus ascorbate treatment significantly reduced CRP levels after six-month therapy (from 1.33±0.36 mg/dL to 0.28±0.09 mg/dL, \(P<0.05 \)). The CRP levels in patients receiving biweekly apheresis alone were under control, but at a higher level (1.18±0.38 mg/dL) as compared to that in patients receiving ascorbate treatment (0.28±0.09 mg/dL).
Discussion

Apheresis efficiently removed atherogenic substances from patients with hypercholesterolemia (6) or those undergoing chronic hemodialysis. Apheresis also ameliorated blood rheology and the endothelial function of coronary arteries (25,26), and improved the prognosis of atherogenic patients. This may explain the beneficial effect of LDL apheresis in preventing fatal and nonfatal cardiovascular events from occurring in patients with hyperlipidemia and uremia (2-4). However, apheresis itself appears to cause an acute and transient reduction in endogenous antioxidant ability, as shown by the decrease in TAS and increased production of ROS by PMNs after apheresis. As a result, there was an increase in patients’ plasma RH₂O₂ and RHOCl after apheresis. Ascorbate administration during or after apheresis increased TAS and selectively diminished RH₂O₂, but not RHOCl. More significantly, the level of oxidative products of lipid and protein (including two inflammatory mediators, MCP-1 and TNF-α) can be reduced further by ascorbate supplement, despite the oxidative stress accompanying apheresis. MCP-1 is highly expressed in macrophage-rich areas of atherosclerotic lesions and plays an important role in the pathogenesis of atherosclerosis (25,27).

The increased ROS found in patients with end-stage renal disease undergoing chronic hemodialysis or in patients with apheresis could originate from complement-, platelet-, and even dialysis membrane-activated PMNs (28). The self-perpetuating formation of H₂O₂ and HOCl from PMNs may potentially oxidize protein and LDL, change the lipid composition of cell membranes and the extracellular matrix (29-30), and consequently lead to vascular dysfunction and atherogenic injury. Cells (such as endothelial cells) are more prone to oxidative damage when exposed to H₂O₂ as compared to HOCl (31). However, when combined with H₂O₂, HOCl increased H₂O₂-mediated oxidative damage and compromised the repair process. HOCl, but not H₂O₂, has been shown to play a critical role in LDL thiol oxidation by PMNs in vitro (32).

An important implication of the oxidative modification hypothesis of atherosclerosis is that increased antioxidants present in the extracellular fluid (plasma) or increased uptake of antioxidants in endothelial cells and PMNs may inhibit atherogenesis by protection of LDL against oxidative modification. Therefore, antioxidant treatment that can reduce apheresis-induced ROS, particularly H₂O₂, should be beneficial for minimizing oxidative damage to leukocytes and endothelial cells. Aside from crystalluria and rare stones that may occur in patients with renal dysfunction, ascorbate is without important adverse effects at doses around 2-10 g/day (33). Ascorbate was selected not only for its strong scavenging H₂O₂ activity within plasma and PMNs, but also for its effect in improving endothelial function and vasodilatation, and preventing the formation of oxLDL-induced leukocyte-platelet aggregates in the blood stream (34). Ascorbate can protect vascular smooth-muscle cells against apoptosis induced by oxLDL/lipid hydroperoxides (e.g., PCOOH) (35). Ascorbate is more effective than vitamin E in scavenging plasma H₂O₂ activity, and both vitamins C and E appeared to be less effective for protection of HOCl-mediated oxidative stress. Ascorbate protects HOCl-mediated LDL oxidation for only a short period (32). Simvastatin and probucol are mild antioxidants that did not appear to have a significant effect on reduction of acute apheresis induced oxidative stress in the hyperlipidemic patients. However, lipid-lowering therapy using the combination of LDL apheresis and lipid-lowering drugs may have a long-term potential role to ameliorate atherosclerotic injury in hyperlipidemic patients (36).

Three lipid peroxidation products, MDA, PCOOH, and oxidized phosphatidylcholine (oxPC) in plasma are generally correlated well with the degree of LDL oxidation (10,22,37). Among these molecules, oxPC is the key molecule in oxLDL, is capable of inducing monocyte adhesion to endothelial cells and PMN migration, and is directly involved in the early development of atherosclerosis (37). PCOOH levels have a positive correlation with RH₂O₂ and RHOCl activity, whereas secondary oxidized products like MDA do not, indicating a critical role of PCOOH in lipid peroxidation. Simultaneous treatment with ascorbate further effectively attenuated PCOOH and other oxidative products in both uremic and hyperlipidemic patients.
Inflammation plays a pivotal role in atherogenesis. In uremic and hyperlipidemic patients, morbidity may result from repetitive induction of the acute-phase response and chronic inflammation (38). Apheresis is associated with damage to PMNs, increased production of ROS, and oxidative stress that lead to inflammation (4,39). In our study, levels of MCP-1 and TNF-α remained unchanged despite a significant reduction of most proteins after apheresis, suggesting increased production of the two inflammatory mediators during the 2-hr apheresis course. However, apheresis plus ascorbate administration effectively suppressed MCP-1 and TNF-α production. The patients receiving ascorbate has lower CRP levels than did patients without ascorbate treatment. Previous studies (38,39) had shown that the CRP level is closely correlated with oxidative stress (including that evoked by leukocytes) and plays an important role in the pathogenesis of atherosclerosis. Lower ascorbate concentrations in association with higher CRP levels and severity of peripheral arterial diseases are found in intermittent claudicant patients (40).

In summary, ascorbic-acid treatment that can reduce ROS, particularly H$_2$O$_2$, should be beneficial for minimizing oxidative damage to leukocytes and endothelial cells. This finding is of particular interest inasmuch as patients with renal disease receiving dialysis are susceptible to a deficit in ascorbate caused by its loss during dialysis and a restricted dietary intake of ascorbate. Increased anti-oxidant activity and decreased oxidative stress after long-term apheresis plus ascorbate treatment is expected as a long-term outcome that has therapeutic potential in improving ROS-induced atherogenic injury in uremic and hyperlipidemic patients. Ascorbate administration together with lipid-soluble antioxidants (41) might be of clinical importance for preventing atherosclerotic disease in patients with uremia or hyperlipidemia who are undergoing hemodialysis.

References

34. Lehr HA, Frei B, Olofsson AM, Carew TE, Arfors KE. Protection from oxidized LDL-induced leukocyte adhesion to microvascular and macrovascular endothelium in vivo by vitamin C but not by vitamin E. Circulation. 1995; 91:1525-1532.

40. Langlois M, Duprez D, Delanghe J, De Buyzere M, Clement DL. Serum vitamin C concentration is low in peripheral arterial disease and is associated with inflammation and severity of atherosclerosis. Circulation. 2001; 103:1863-1868.

Figures and Figure Legends

Figure 3. Effect of apheresis on the ROS production by PMNs. Increased ROS activity was detected in PMNs obtained from hyperlipidemic patients (n=13) after apheresis without ascorbate (−AA) treatment. The increased ROS was enhanced with the duration of apheresis treatment, and AA (+AA, n=10), but not simvastatin (n=5) or probucol (n=4) treatment could effectively suppress the ROS formation by PMNs (A). The increased CL counts from activated PMNs were greatly inhibited by catalase, and partially depressed by SOD and EGCG (B). Increased amounts of ROS released from PMNs were detected in the culture medium after various times of culture. Note the decreased RH2O2 with AA (C). * P<0.05 vs. control value. # P<0.05 between with and without AA treatment.

Figure 4. Effects of apheresis and ascorbate supplement on oxidized parameters. PCOOH (A), MDA (B), methylguanidine (MG, C), and dityrosine (DT, D) in plasma were obtained from normal individuals and from uremic and hyperlipidemic patients. Apheresis efficiently reduced oxidized products, especially in PCOOH. Ascorbate supplementation resulted in further reduction of these oxidized parameters in hyperlipidemic and uremic subjects. * P<0.05 vs. the pre-apheresis value of normal plasma; # P<0.05 vs. the pre-apheresis value of the respective group; and * P<0.05 vs. the value for patients without ascorbate administration in each respective group.
Figure 1. (A) Typical emission spectra of the H$_2$O$_2$ CL in plasma (or PBS), obtained from a healthy control. The test mixture consisted of 1.0 mL of 0.03% H$_2$O$_2$ and 1.0 mL of 25 µmole/L luminol. Plasma (100 µl) added to the test mixture depressed the RH$_2$O$_2$ counts. (B) Ascorbate added to the test mixture revealed strong H$_2$O$_2$ scavenging activity in a dose-dependent manner. Note the even stronger antioxidant activity in ascorbate-plasma mixture. Vitamin E had weaker H$_2$O$_2$ scavenging activity compared with that for ascorbate. * $P<0.05$ vs. the control value of PBS or plasma without vitamin C or vitamin E treatment.
Figure 2. Effects of apheresis and ascorbate supplement on pRH$_2$O$_2$, pRHOC1, and TAS in plasma from uremic and hyperlipidemic patients. The pre-apheresis plasma in uremic and hyperlipidemic patients had elevated pRH$_2$O$_2$ (A) and pRHOC1 (C) and lower TAS (E) than that in normal subjects. The post-apheresis plasma had significantly elevated pRH$_2$O$_2$ (A,B) and pRHOC1 (C,D) and decreased TAS, indicating the presence of oxidative stress accompanied with apheresis. Ascorbate supplementation resulted in augmented ROS scavenging activity for H$_2$O$_2$ (but not for HOCl), as shown by the marked reduction of RH$_2$O$_2$. The ROS scavenging activity for RH$_2$O$_2$ is positively correlated with the anti-oxidative activity, expressed as TAS (E). * $P<0.05$ vs. the pre-apheresis value of normal plasma. # $P<0.05$ vs. the pre-apheresis value of the respective group, and \parallel $P<0.05$ vs. the value for patients without ascorbate administration in each respective group.
Figure 5. Correlation between pRH$_2$O$_2$ and pRHOCl and plasma total antioxidant status (TAS). In healthy controls and in uremic and hyperlipidemic patients, RH$_2$O$_2$ and RHOCl were negatively correlated with TAS (A&C). A positive correlation between RH$_2$O$_2$ and RHOCl counts with plasma PCOOH was detected in the 98 human subjects (B&D).