On the photophysical and electrochemical studies of dye-sensitized solar cells with the new dye CYC-B1

Jian-Ging Chena, Chia-Yuan Chenb, Shi-Jhang Wub, Jheng-Ying Lib, Chun-Guey Wu\textsuperscript{b,**, Kuo-Chuan Ho\textsuperscript{a,c,*}}

a Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
b Department of Chemistry, National Central University, Chung-Li 32054, Taiwan
c Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

\textbf{A R T I C L E I N F O}

\begin{itemize}
 \item Article history:
 \item Received 20 December 2007
 \item Received in revised form 6 July 2008
 \item Accepted 7 August 2008
 \item Available online 19 September 2008
\end{itemize}

\textbf{Keywords:}
Dye-sensitized solar cells
Nanocrystalline TiO\textsubscript{2}
Ruthenium photosensitizer

\textbf{A B S T R A C T}

In this study, the photoelectrochemical characteristics of a ruthenium photosensitizer with an alkyl bithiophene group, designated as CYC-B1, are studied. The effect of mesoporous TiO\textsubscript{2} film thickness on the photovoltaic performance of CYC-B1 and N3 dye-sensitized solar cells was investigated. The performance of the dye-sensitized nanocrystalline TiO\textsubscript{2} solar cells (DSSC) fabricated using CYC-B1 dye-anchored TiO\textsubscript{2} photoelectrode showed a convincing enhancement in cell efficiency when the TiO\textsubscript{2} film thickness was increased from 3 \(\mu\)m (eff. = 5.41\%) to 6 \(\mu\)m (eff. = 7.19\%). The efficiency of the CYC-B1-sensitized DSSC was maximum at 6 \(\mu\)m of the TiO\textsubscript{2} film thickness, reached its limiting value and remained constant up to 53 \(\mu\)m, although a similar trend was also observed for N3 dye-sensitized DSSC, however, the maximum efficiency achieved was only at 27 \(\mu\)m thickness (eff. = 6.75\%). As expected, the photocurrent density generated in the DSSC modified by CYC-B1 dye is larger than that from N3 dye. The effect of guanidinium thiocyanate (GuSCN) (additive) addition to the electrolyte on the photovoltaic performance of DSSCs based on CYC-B1 was also investigated. Furthermore, the electrochemical impedance spectroscopy (EIS) technique and photo-transient laser method have been employed to analyze the charge transfer resistances (\(R_c\)) and the lifetime of the injected electrons on the TiO\textsubscript{2} containing different thicknesses.

\textcopyright 2008 Elsevier B.V. All rights reserved.

1. Introduction

Dye-sensitized nanocrystalline TiO\textsubscript{2} solar cells (DSSCs), which possess high conversion of sunlight to electricity, by means of harvesting of solar irradiation by the sensitizer, have attracted considerable attention in scientific research and practical applications [1,2]. In these DSSCs, sensitizing dye molecules must be chemically adsorbed on the porous nanocrystalline TiO\textsubscript{2} surfaces, and they harvest solar light ranging from the UV–visible and near-IR regions just like photovoltaic semiconductor diode interfaces.

However, the conversion efficiency of the DSSCs is much lower than that of the silicon-based photovoltaic cells. To obtain a high conversion efficiency, optimization of the short-circuit photocurrent (\(J_{sc}\)) and open-circuit potential (\(V_{oc}\)) of the cell is essential.

Up to till date, a highest conversion efficiency of 11\% was achieved by using cis-di(thiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylat erothenium(II)) (N3) as a photosensitizer [3,4]. Further, in order to improve the photovoltaic performance and stability of the DSSCs, extensive efforts have been focused on the synthesis of new sensitizer possessing high efficiency and the search for stable electrolytes and/or new photoanode materials [5–8].

In recent years, the most investigated efficient sensitizers are ruthenium complexes, such as N719 [9], Z907 [10], k7 7 [11], HRS-1 [12] dyes, which possess effective charge separation at the MLCT (metal-to-ligand charge transfer) absorption band in the visible solar light region. Enhancement of thermal and long-term stability was accomplished, for instance with the Z907 dye, by anchoring a long, hydrophobic alkyl group on the ruthenium dye molecules [10]. On the other hand, several organic dye sensitizers have been reported for the DSSCs, having considerable incident photon to current efficiency (IPCE) partly due to the high molar extinction coefficient of the conjugated \(\pi\)-bonds coupled with the aromatic ring [6]. In addition, the effect of additives in the electrolyte also has been considered. For example, guanidinium thiocyanate (GuSCN) has been used as an additive in organic electrolytes [13,14], as it remarkably improves the photovoltage of
DSSCs due to a reduction in dark current, and thus improves the conversion efficiency [4,13].

A new ruthenium photosensitizer CYC-B1 was recently reported by our group [15], in which one of the dbcpy ligands (4,4′-dicarboxylic acid-2,2′-bipyridine) in N3 was replaced with abtpy (4,4′-di-2-octyl-5-(thiophen-2-yl)thiophen-2-yl-2,2′-bipyridine), a bipyridine ligand substituted with alkyl thiophene groups. In evidence, CYC-B1 has the highest absorption coefficient among the Ru-based photosensitizers used earlier in DSSCs, and its power-conversion efficiency is 10% higher than that of N3 under identical cell fabrication and measuring procedures [15].

In this work, we would like to explore the influences of experimental conditions, such as the effect of different thicknesses of TiO2 layer and the effect of GuSCN added as an additive, on the photovoltaic performance of the DSSC sensitized with CYC-B1. Moreover, the electrochemical impedance spectroscopy (EIS) technique and photo-transient laser method have been employed to analyze the resistances of the various cells and measure the lifetime of the injected electrons, respectively.

2. Experimental section

2.1. Materials

Anhydrous LiI, I2, poly(ethylene glycol) (PEG), titanium (IV) isopropoxide (TTIP) (+98%) and 4-tert-butylpyridine (TBP) were obtained from Merck. Acetonitrile was purchased from Merck and dehydrated by the addition of molecular sieves (4 Å) into it. Furthermore, CYC-B1 photosensitizer was prepared in a typical one-pot synthesis, reported in the previous work [15].

2.2. Preparation of TiO2 thin films and the cell assembly

The preparation of TiO2 precursor and the electrode fabrication were carried out based on previous reports [16] except after autoclave treatment, where the solution was concentrated to 13 wt% and PEG (MW 20,000) was added to the TiO2 paste to prevent the film from cracking during drying. The TiO2 paste was coated on a fluorine-doped tin oxide (FTO) glass plate using glass rod. For the first coating, the TiO2 paste incorporated with PEG (MW 20,000) was added. A second coating was made with the same paste followed by a final coating, which contains mixture of light scattering particles of TiO2 (300 (30) and 20 nm (70 wt%)) for reducing the light loss by back scattering. An active surface area of 0.16 cm² of electrode was fixed and immersed overnight in an acetonitrile: TBP solution in the volume ratio of 1:1 that containing 2 × 10⁻⁴ M dye (either CYC-B1 or N3).

A platinum-sputtered FTO (8 Ω/sq) conducting glass plate (Pt thickness of 100 nm) was used as the counter-electrode and the electrolyte was composed of 0.5 M LiI/0.05 M I2/0.5 M TBP in acetonitrile. In addition, GuSCN was added to the electrolyte if necessary. The electrolyte solution was sprayed on both the dye-immobilized photoanode and Pt-sputtered FTO glass and then, they were sandwiched together using cell holders immediately.

2.3. Instrumentation

The cell was illuminated by an Oriel solar simulator (#6266) equipped with a water-based IR filter under AM 1.5 filter (Oriel, #81075) irradiation. The photoelectrochemical characteristics of the DSSCs were recorded with a potentiostat/galvanostat (PGSTAT 30, Autolab, Eco-Chemie, Netherlands). EIS were obtained by the above-mentioned potentiostat/galvanostat equipped with FRA2 module under constant light illumination of 100 mW/cm² at the open-circuit voltage. The frequency range explored and ac amplitude was set at 10 mHz to 65 kHz and at 10 mV, respectively, between the counter-electrode and the working electrode. The impedance spectra were analyzed by an equivalent circuit model interpreting the characteristics of the DSSCs [17]. The photovoltage transients of assembled devices were recorded with a digital oscilloscope (LeCroy, model LT322). Pulsed laser excitation was applied by a frequency-doubled Q-switched Nd:YAG laser (Spectra-Physics laser, model Quanta-Ray GCR-3-10) with 2 Hz repetition rate at 532 nm and 7 ns pulse width at half-height. The beam size was slightly larger than 0.16 cm² to cover the area of the device with incident energy of 1 mJ/cm². The average electron lifetime was estimated approximately by fitting a decay of the open-circuit voltage transient with \(\exp(-t/\tau_e) \), where \(t \) is time and \(\tau_e \) is an average time constant before recombination [18].

3. Results and discussions

3.1. The effect of the TiO2 film thickness

The thickness of the TiO2 film is one of the important factors and shows a dominant effect on the performance of the DSSC. The influence of the thickness of the TiO2 film on both CYC-B1- and N3-sensitized DSSCs is shown in Fig. 1. The efficiency of the DSSC fabricated with CYC-B1 dye-TiO2 photo-electrode showed a drastic enhancement in cell efficiency as the TiO2 film thickness was increased from 3 (eff. = 5.41%) to 6 μm (eff. = 7.19%). However, as seen in Fig. 1, the cell efficiency remained almost constant on further increase of the TiO2 film thickness up to 53 μm. Similarly, the maximum cell efficiency for N3 dye (6.75%) was reached while the thickness of the TiO2 film was maintained at 27 μm. Under certain film thickness, it is generally observed that thicker film adsorbs more dye molecules and thus, leading to the enhancement in the photocurrent of the DSSC. The photocurrent densities of DSSCs made with CYC-B1 dye adsorbed on different thicknesses of the TiO2 film are higher than those of DSSCs made with N3 dye (inset in Fig. 1). The drastic increase in photocurrent density, observed with CYC-B1 when the TiO2 thickness was increased from 3 to 6 μm, can be ascribed to the superior light-harvesting capacity of CYC-B1 dye. Nevertheless, the increase of TiO2 film thickness resulting in the decrease of \(V_{oc} \) was observed. Additionally, in the case of CYC-B1 dye, the fill factor, which is not shown in Fig. 1, decreases from 0.67 to 0.59 as
the TiO₂ film thickness is increased from 6 to 53 μm. This is apparently due to the increase in series resistance.

This interesting behavior may be explained by the following two factors. The first factor has to do with the average pore diameter of the TiO₂ film (11.5 nm) obtained at the hydrothermal temperature of 240 °C [16]. It has been known that N3 dye molecules could occupy a space of 3.3 nm (1.65 nm radius [19]) and the radius of triiodide ion in CH₃CN is about 4 nm [20]. Hence, the residual space of TiO₂ is spared only for the diffusion of the redox couple. Under this condition, if the TiO₂ film is thicker than a particular value, it will be very difficult for the redox mediators to diffuse into the TiO₂ matrix. Besides, the electron transport in the electrolyte-filled TiO₂ mesoporous film is coupled to the ionic motion due to ambipolar diffusion [21,22]. As a result of this, only a finite amount of dye molecules was reduced by mediator ions, limiting the continuous increasing in the current. The second factor has to do with the lifetime of electrons. It is generally accepted that the average electron lifetime can be estimated from the slope. Besides, from the inserted table in Fig. 2, fitting has been satisfied, thus the average electron lifetime can be estimated by using

\[D_e = \frac{w^2}{2.35 \tau_e} \]

(1)

where \(w \) is the film thickness and the factor 2.35 arises from the geometry of the diffusion problem [24].

From the photovoltage transients of the assembled DSSCs, the average lifetime of photo-injected electrons of the TiO₂ film incorporated with CYC-B1 dye (4.70 ms) is larger than that of the TiO₂ film incorporated with N3 dye (3.96 ms), as shown in Fig. 2. The photovoltage transient is shown in the inset of Fig. 2 with Y-axis plotted in a logarithmic scale. It can be seen that a near-linear fitting has been satisfied, thus the electron lifetime can be obtained from the slope. Besides, from the inserted table in Fig. 2, the electron diffusion length and the electron diffusion coefficient of DSSCs made with CYC-B1 and N3 are 17 μm and \(2.2 \times 10^{-4} \) cm² s⁻¹ as well as 16 μm and \(1.9 \times 10^{-4} \) cm² s⁻¹, respectively. Consequently, the photocurrent density generated by CYC-B1 dye is larger than that by N3 dye at the similar film thickness. Therefore, the drastic increase in cell efficiency observed with CYC-B1 dye can be ascribed to its superior light-harvesting capacity.

3.2. EIS Analysis

The EIS technique was used to characterize the kinetics of the DSSCs by analyzing the variation in impedances associated with the different configurations of cells [25]. In this work, the analysis was mainly done using Nyquist plots (Fig. 3a and b) associated with the different TiO₂ film thicknesses sensitized with CYC-B1 or N3, respectively, measured at open-circuit voltage. The ohmic serial resistance (\(R_s \)) corresponds to the electrolyte and the FTO interface [26]. The results obtained from Fig. 4 show the lower
were unaffected by the increase of the amount of GuSCN, which is explained in terms of a Grothuss-type transport mechanism [27–29]. Addition of GuSCN prevents the oxidation of \(I^- \) by providing a more effective insulating barrier layer and results in the decrease of photocurrent of the DSSCs in particular at the 0.2 M of GuSCN. On the other hand, at 0.2 M of GuSCN, adsorption of GuSCN not only reduces the electron recombination between the TiO\(_2\) surface and \(I_3^- \), but also shifts the band edge to negative potential, as reported in Grätzel’s work [13]. Consequently, the optimum concentration of the GuSCN is considered as 0.2 M in the CYC-B1 dye-sensitized solar cells. Addition of 0.2 M of GuSCN showed a bit increase in both \(J_{oc} \) (20.45 mA/cm\(^2\)) and \(V_{oc} \) (0.690 V) for the cell containing CYC-B1 dye systems when compared to the absence of GuSCN (\(J_{oc} \): 19.97 mA/cm\(^2\); \(V_{oc} \): 0.675 V). In this case, we did not perform the study for the cell efficiency vs. GuSCN concentration at various TiO\(_2\) film thicknesses. It is noticed that the addition of 0.2 M of GuSCN in electrolyte increased \(V_{oc} \) and \(J_{sc} \) of the solar cell. The maximum efficiency achieved is 9.58%.

4. Conclusion

The effect of thickness of mesoporous TiO\(_2\) film on the performance of the DSSCs was investigated for both CYC-B1 and N3 dyes. The efficiency of the DSSC made with CYC-B1 dye showed an appreciable enhancement in cell efficiency as the TiO\(_2\) film thickness increased from 3 (eff. = 5.41%) to 6 \(\mu \)m (eff. = 7.19%) and remained constant on further increase of the TiO\(_2\) film thickness up to 53 \(\mu \)m. As for N3 dye, the cell efficiency reached a maximum value while the thickness of TiO\(_2\) film was maintained at 27 \(\mu \)m (eff. = 6.75%). As expected, the photocurrent density generated by the CYC-B1 dye is larger than that of the N3 dye. Upon addition of 0.2 M GuSCN, the efficiency of the cell sensitized with the new dye CYC-B1 improved to 9.58%.

Acknowledgements

This work was financially supported by the National Research Council of Taiwan, the Republic of China. This work was also partially supported by the Academia Sinica, Taipei, Taiwan, the Republic of China.

References

