Approximate proximal algorithms for generalized variational inequalities with paramonotonicity and pseudomonotonicity

L.C. Cenga, T.C. Laib, J.C. Yaoc,∗

a Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
b College of Management, National Taiwan University, Taipei, Taiwan
c Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan

Received 9 November 2006; received in revised form 21 June 2007; accepted 27 June 2007

Abstract

We propose an approximate proximal algorithm for solving generalized variational inequalities in Hilbert space. Extension to Bregman-function-based approximate proximal algorithm is also discussed. Weak convergence of these two algorithms are established under the paramonotonicity and pseudomonotonicity assumptions of the operators.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Generalized variational inequalities; Monotone operators; Approximate proximal algorithms; Weak accumulation points; Weak convergence

1. Introduction and preliminaries

Let H be a real Hilbert space with inner product $\langle \cdot , \cdot \rangle$ and norm $\| \cdot \|$, respectively. Given $T : D(T) \subset H \rightarrow 2^H$ where $D(T)$ denotes the domain of T and $\Omega \subset H$ be a nonempty closed and convex set, the generalized variational inequality problem for T and Ω, denoted by $\text{GVI}(T, \Omega)$ is the problem of finding $x^* \in D(T)$ such that

$$x^* \in \Omega, \exists u^* \in T(x^*): \langle u^*, x - x^* \rangle \geq 0, \quad \forall x \in \Omega.$$ \hspace{1cm} (1.1)

The problem $\text{GVI}(T, \Omega)$ was initially introduced in the 1970s; see, e.g. Bruck [1] and the references therein. Subsequently, Fang and Peterson [2] considered it in 1982 in the setting of finite-dimensional spaces. Since then, this problem has been extensively studied in the literature mainly on the existence of solutions of the problems. See, e.g. [3–5] and the references therein.

When T is single-valued, the $\text{GVI}(T, \Omega)$ reduces to the classical variational inequalities $\text{VI}(T, \Omega)$ which have been extensively studied both in finite- and infinite-dimensional spaces. See, [6–9] and the references therein. We observe that both $\text{GVI}(T, \Omega)$ and $\text{VI}(T, \Omega)$ are closely related to optimization problems. See, e.g. [6,9,10].

In this paper we suggest and analyse the approximate proximal algorithm (Algorithm 2.1) and Bregman-function-based approximate proximal algorithm (Algorithm 3.1) for solving $\text{GVI}(T, \Omega)$, where T is a paramonotone and

* Corresponding author.

E-mail address: yaojc@math.nsysu.edu.tw (J.C. Yao).

0898-1221/$-$ see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.06.010
Proposition 4. Let \(T : D(T) \subset H \to 2^H \) be an operator where \(D(T) \) is the domain of \(T \). Then \(T \) is said to be

(i) monotone if for all \(x, y \in \Omega, u \in T(x), \) and \(v \in T(y) \),
\[\langle u - v, x - y \rangle \geq 0 \]

(ii) paramonotone [12] on \(\Omega \) if \(T \) is monotone and \(\langle v - u, y - z \rangle = 0 \) with \(y, z \in \Omega \), \(v \in T(y), u \in T(z) \) implies that \(u \in T(y), v \in T(z) \).

Proposition 1.1 ([12, Proposition 4]). Assume that \(T \) is paramonotone on \(\Omega \) and \(\bar{x} \) is a solution of GVI\((T, \Omega)\). Let \(x^* \in \Omega \) be such that there exists an element \(u^* \in T(x^*) \) with \(\{u^*, x^* - \bar{x}\} \leq 0 \). Then \(x^* \) also solves GVI\((T, \Omega)\).

In 2005, Burachik, Lopes and Svaiter [10] studied an outer approximation for the variational inequality problem. To prove the convergence of the method, they employed the paramonotonicity and pseudomonotonicity of multivalued operators. Let \(B \) be a reflexive Banach space and the operator \(T : D(T) \subset H \to 2^H \) be such that the domain \(D(T) \) is closed and convex. \(T \) is said to be pseudomonotone [13] if for any sequence \(\{(x_n, u_n)\} \subset G(T) \), the graph of \(T \), there holds the following:

(a) \(\{x_n\} \) converges weakly to \(x^* \in D(T) \),
(b) \(\limsup_n \langle u_n, x_n - x^* \rangle \leq 0 \),

then for every \(w \in D(T) \) there exists an element \(u^* \in T(x^*) \) such that
\[\langle u^*, x^* - w \rangle \leq \liminf_n \langle u_n, x_n - w \rangle. \]

2. Approximate proximal algorithm for GVI\((T, \Omega)\)

Let \(\Omega \subset H \) be a nonempty closed and convex set and let \(T : D(T) \subset H \to 2^H \) be a multivalued operator with \(\Omega \cap D(T) \neq \emptyset \). Recall that the generalized variational inequality GVI\((T, \Omega)\) is the problem of finding \(x^* \in \Omega \cap D(T) \) such that there exists \(u^* \in T(x^*) \) with
\[\langle u^*, x - x^* \rangle \geq 0, \quad \forall x \in \Omega. \tag{2.1} \]
\(S^* \) denotes the solution set of GVI\((T, \Omega)\). We fix a sequence \(\{\Omega_n\} \) of convex closed subsets of \(H \) and two sequences \(\{e_n\}, \{\lambda_n\} \subset \mathbb{R}_+ := [0, +\infty) \) satisfying the following conditions:

(A1) \(\Omega \subset \Omega_n \) for all \(n \), and there exist \(x^* \in S^* \) and \(u^* \in T(x^*) \) such that
\[\langle u^*, x - x^* \rangle \geq 0, \quad \forall x \in \Omega_n \text{ and } \forall n. \]

(A2) \(\sum_n (e_n/\lambda_n) < +\infty \) with \(\{\lambda_n\} \subset (0, M] \) for some \(M > 0 \).

Observe that there are some situations where (A1) is satisfied. For example, if \(\Omega_n \) is contained in some bounded, closed, convex subset of \(H \) for all \(n \) and the operator \(T \) is upper semicontinuous along line segments with bounded closed convex values, then (A1) is satisfied (see, e.g. [3]).

We now describe our first algorithm as follows:
Algorithm 2.1. Initialization. Take any initial value \(x_0 \in \Omega \) and \(\Omega_1 \supset \Omega \).

Iterations. For \(n = 1, 2, \ldots \), find \(x_n \in \Omega_n \cap D(T) \), a solution of the \(n \)th approximating problem, defined as follows: for given \(\Omega_n \), \(\varepsilon_n \) and \(\lambda_n \),

\[
\begin{aligned}
\text{find } x_n \in \Omega_n \cap D(T) \text{ such that there exists } u_n \in T(x_n) \text{ with }
\langle \lambda_n (x_{n-1} - x_n + e_n) - u_n, x_n - x \rangle \geq -\varepsilon_n, \quad \forall x \in \Omega_n, \\
\end{aligned}
\]

(\(AP_n \))

where \(\{\varepsilon_n\} \) is an error sequence in \(H \).

Definition 2.1. Let \(\{\Omega_n\} \), \(\{\varepsilon_n\} \) and \(\{\lambda_n\} \) be as in (A1) and (A2).

(a) A sequence \(\{x_n\} \) is called an almost-orbit if \(x_n \) solves \((AP_n) \) for all \(n \).

(b) An almost-orbit \(\{x_n\} \) is called asymptotically feasible (AF, for short) if all weak accumulation points of \(\{x_n\} \) belong to \(\Omega \).

We remark that if \(D(T) = H \), \(\varepsilon_n = x_n - x_{n-1} \) and \(\lambda_n = 1 \) for all \(n \), then the concepts of almost-orbit and asymptotic feasibility reduce to the concepts of orbit and feasibility in [10, Definition 3.1], respectively.

Lemma 2.1 ([11, Lemma 2.1]). Let \(\{a_n\} \), \(\{b_n\} \) and \(\{c_n\} \) be nonnegative real sequences satisfying the following condition:

\[
a_{n+1} \leq (1 + b_n) a_n + c_n, \quad \forall n \geq n_0,
\]

(*)

for some integer \(n_0 \geq 1 \), where \(\sum_n b_n < +\infty \) and \(\sum_n c_n < +\infty \). Then \(\lim_n a_n \) exists.

Now, we state and prove the main result of this section.

Theorem 2.1. Suppose that the sequence \(\{x_n\} \) generated by Algorithm 2.1 is an AF almost-orbit and (A1) as well as (A2) hold. Suppose that

(i) \(T \) is paramonotone and pseudomonotone with closed domain;

(ii) \(S^* \) is nonempty.

If \(\sum_n \|e_n\| < +\infty \), then \(\{x_n\} \) is weakly convergent to a solution of GVI(\(T, \Omega \)).

Proof. Following the same proof of Theorem 2.1 in [11], we can prove the following conclusions:

(i) For \(x^* \in S^* \) as in (A1), there holds

\[
\lambda_n (x_{n-1} - x_n + e_n, x_n - x^*) \geq -\varepsilon_n.
\]

(ii) For \(x^* \in S^* \) as in (A1), there holds

\[
\|x_n - x^*\|^2 \leq \|x_{n-1} - x^*\|^2 - \|x_n - x_{n-1}\|^2 + 2\langle \varepsilon_n, x_n - x^* \rangle + 2\|\varepsilon_n\|e_n + \lambda_n.
\]

(iii) For \(x^* \in S^* \) as in (A1), there exists an integer \(N_0 \geq 1 \) such that for all \(n \geq N_0 \)

\[
\|x_n - x^*\|^2 \leq (1 + \beta_n)\|x_{n-1} - x^*\|^2 - \frac{1}{1 - \|\varepsilon_n\|\varepsilon_n} \|x_n - x_{n-1}\|^2 + \beta_n,
\]

where \(\beta_n = \frac{\|e_n\| + 2e_n/\|\varepsilon_n\|}{1 - \|\varepsilon_n\|\varepsilon_n}, \quad \forall n \geq N_0. \)

(iv) The following statements hold:

(a) \(\lim_n \|x_n - x^*\| \) exists for \(x^* \in S^* \) as in (A1) and hence \(\{x_n\} \) is bounded;

(b) \(\lim_n \|x_n - x_{n-1}\| = 0 \).

Next, we shall prove that \(\{x_n\} \) converges weakly to a solution of GVI(\(T, \Omega \)).

Indeed, we first claim that every weak accumulation point of \(\{x_n\} \) is a solution of GVI(\(T, \Omega \)). Let \(\hat{x} \) be a weak accumulation point of \(\{x_n\} \). Then there exists a subsequence \(\{x_{n_j}\} \) weakly convergent to \(\hat{x} \). For each \(j \), \(x_{n_j} \) solves \((AP_{n_j}) \). Thus there exists \(u_{n_j} \in T(x_{n_j}) \) such that

\[
\langle \lambda_{n_j} (x_{n_j-1} - x_{n_j} + e_{n_j}) - u_{n_j}, x_{n_j} - x \rangle \geq -\varepsilon_{n_j}, \quad \forall x \in \Omega_{n_j} \text{ and } \forall n_j.
\]
By the condition $\Omega_{n_j} \supset \Omega$, we have
\[
\langle \lambda_{n_j} (x_{n_j-1} - x_{n_j} + e_{n_j}) - u_{n_j}, x_{n_j} - x \rangle \geq -\varepsilon_{n_j}, \quad \forall x \in \Omega \text{ and } \forall n_j.
\] (2.2)

Since $\{x_n\}$ is AF, $\hat{x} \in \Omega$. Therefore
\[
\langle \lambda_{n} (x_{n-1} - x_{n} + e_{n}) - u_{n}, x_{n} - \hat{x} \rangle \geq -\varepsilon_{n}, \quad \forall n_j,
\]
which implies that
\[
\varepsilon_{n} + \lambda_{n} \langle x_{n-1} - x_{n} + e_{n}, x_{n} - \hat{x} \rangle \geq \langle u_{n}, x_{n} - \hat{x} \rangle, \quad \forall n_j.
\]

Also, utilizing (A2) we have
\[
\limsup_{j} \langle u_{n_j}, x_{n_j} - \hat{x} \rangle \leq \limsup_{j} \langle \lambda_{n_j} (x_{n_j-1} - x_{n_j} + e_{n_j}, x_{n_j} - \hat{x}) + \varepsilon_{n_j} \rangle
\]
\[
= \limsup_{j} \lambda_{n_j} \left[\langle (x_{n_j-1} - x_{n_j} + e_{n_j}), x_{n_j} - \hat{x} \rangle + \frac{\varepsilon_{n}}{\lambda_{n_j}} \right]
\]
\[
\leq \limsup_{j} M \left[(\|x_{n_j-1} - x_{n_j}\| + \|e_{n_j}\|) \|x_{n_j} - \hat{x}\| + \frac{\varepsilon_{n_j}}{\lambda_{n_j}} \right]
\]
\[
= 0.
\]

Take any $\bar{x} \in S^*$. From the pseudomonotonicity of T, we conclude that there exists $\hat{u} \in T(\hat{x})$ such that
\[
\liminf_{j} \langle u_{n_j}, x_{n_j} - \bar{x} \rangle \geq \langle \hat{u}, \hat{x} - \bar{x} \rangle.
\]

Since \bar{x} lies in Ω, from (2.2), we have
\[
\liminf_{j} \langle u_{n_j}, x_{n_j} - \bar{x} \rangle \leq \liminf_{j} \langle \lambda_{n_j} (x_{n_j-1} - x_{n_j} + e_{n_j}, x_{n_j} - \hat{x}) + \varepsilon_{n_j} \rangle
\]
\[
\leq \limsup_{j} \lambda_{n_j} \left[\langle (x_{n_j-1} - x_{n_j} + e_{n_j}), x_{n_j} - \hat{x} \rangle + \frac{\varepsilon_{n_j}}{\lambda_{n_j}} \right]
\]
\[
\leq \limsup_{j} M \left[(\|x_{n_j-1} - x_{n_j}\| + \|e_{n_j}\|) \|x_{n_j} - \hat{x}\| + \frac{\varepsilon_{n_j}}{\lambda_{n_j}} \right]
\]
\[
= 0.
\]

Combining the last two inequalities we infer that
\[
\langle \hat{u}, \hat{x} - \bar{x} \rangle \leq 0.
\]

Now taking into account the paramonotonicity of T and Iusem [12, Proposition 4], we deduce that \hat{x} is a solution of the GVI(T, Ω).

On the other hand, suppose that \hat{x} and \bar{x} are any two weak accumulation points of $\{x_n\}$ and that two subsequences $\{x_{n_j}\}$ and $\{x_{m_j}\}$ of $\{x_n\}$ weakly converge to \hat{x} and \bar{x}, respectively. Then both \hat{x} and \bar{x} belong to S^*. Thus, by conclusion (iv) (a), we know that both $\lim_n \|x_n - \hat{x}\|$ and $\lim_n \|x_n - \bar{x}\|$ exist. Now, observe that
\[
\lim_{n} \|x_n - \hat{x}\|^2 = \lim_{i} \|x_{n_i} - \hat{x}\|^2 = \lim_{i} \|x_{n_i} - \hat{x} + \hat{x} - \bar{x}\|^2
\]
\[
= \lim_{i} \|x_{n_i} - \hat{x}\|^2 + 2 \langle x_{n_i} - \hat{x}, \hat{x} - \bar{x} \rangle + \|\hat{x} - \bar{x}\|^2
\]
\[
= \lim_{i} \|x_{n_i} - \hat{x}\|^2 + \|\hat{x} - \bar{x}\|^2
\]
\[
= \lim_{n} \|x_n - \hat{x}\|^2 + \|\hat{x} - \bar{x}\|^2.
\] (2.3)

Replacing the role of \hat{x} by \bar{x}, we similarly derive
\[
\lim_{n} \|x_n - \bar{x}\|^2 = \lim_{n} \|x_n - \bar{x}\|^2 + \|\bar{x} - \hat{x}\|^2.
\] (2.4)
Adding up (2.3) and (2.4) we immediately get $\hat{x} = \bar{x}$. Therefore, $\{x_n\}$ is weakly convergent to a solution of $\text{GVI}(T, \Omega)$.

\[\square\]

3. Extension to Bregman function-based approximate proximal algorithm

Let Λ be a convex open subset in H and $h : \overline{\Lambda} \to H$ be a Bregman function where $\overline{\Lambda}$ denotes the closure of the set Λ. We refer Definition 2.1 in [14] for the definition of Bregman functions. We observe that although [14, Definition 2.1] is in finite-dimensional setting, it is not difficult to see that it can be extended to Hilbert space. The Bregman distance between x and y is defined via the “D-function”

$$D_h(x, y) = h(x) - h(y) - \langle \nabla h(y), x - y \rangle,$$

where $x \in \overline{\Lambda}$ and $y \subseteq \Lambda$. From the strict convexity of h, one can prove that $D_h(x, y) \geq 0$, and $D_h(x, y) = 0$ if and only if $x = y$. If $h(x) = \frac{1}{2}\|x\|^2$, then $D_h(x, y) = \frac{1}{2}\|x - y\|^2$. In the following, we will use a class of functions that is presented as

$$h(x) = h_0(x) + \frac{1}{2}\|x\|^2,$$

where h_0 is a Bregman function. It is easy to see that h is also a Bregman function. Thus for all $x \in \overline{\Lambda}$ and $y \in \Lambda$, we have as in [11]

$$D_h(x, y) \geq \frac{1}{2}\|x - y\|^2.$$ \hfill (3.2)

In this section we still consider the $\text{GVI}(T, \Omega)$ defined by (2.1). We still fix a sequence $\{\Omega_n\}$ of convex closed subsets of H and two sequences $\{\epsilon_n\}, \{\lambda_n\} \subset \mathcal{R}_+: = [0, +\infty)$ satisfying the assumptions (A1) and (A2) in Section 2. In addition, assume also that

(A3) $\nabla h(\cdot)$ is uniformly continuous on any closed bounded subsets of H.

These sequences and h define new approximating problems which form a general Bregman function-based approximate proximal point scheme.

Algorithm 3.1. Initialization. Take any initial value $x_0 \in \Omega$ and $\Omega_1 \supset \Omega$.

Iterations. For $n = 1, 2, \ldots$, find $x_n \in \Omega_n \cap D(T) \cap \Lambda$, a solution of the nth approximating problem, defined as follows: for given Ω_n, ϵ_n and λ_n,

$$\left\{ \begin{array}{l}
\text{find } x_n \in \Omega_n \cap D(T) \cap \Lambda \text{ such that there exists } u_n \in T(x_n) \text{ with } \\
(\lambda_n \nabla h(x_{n-1}) - \nabla h(x_n) + \epsilon_n) - u_n, x_n - x \geq -\epsilon_n, \forall x \in \Omega_n, \\
\end{array} \right. \quad (\text{BAP}_n)$$

where $\{\epsilon_n\}$ is an error sequence in H.

Definition 3.1. Let $\{\Omega_n\}, \{\epsilon_n\}$ and $\{\lambda_n\}$ be as in (A1) and (A2).

(a) A sequence $\{x_n\}$ is called an h-almost-orbit if x_n solves (BAP$_n$) for all n.

(b) An h-almost-orbit $\{x_n\}$ is called asymptotically feasible (AF, for short) if all weak accumulation points of $\{x_n\}$ belong to Ω.

Next we discuss the convergence of **Algorithm 3.1** under the assumptions of paramonotonicity and pseudomonotonicity imposed on T. To prove the convergence of **Algorithm 3.1**, we need additionally the following condition:

(A4) $\nabla h(\cdot)$ is sequentially continuous from the weak topology of H to the weak topology of H.

Theorem 3.1. Suppose that the assumptions (A1)–(A4) hold and that the sequence $\{x_n\}$ generated by **Algorithm 3.1** is an AF h-almost-orbit. Suppose that

(i) T is paramonotone and pseudomonotone with closed domain;

(ii) S^* is nonempty.
If $\sum_n \|e_n\| < +\infty$, then $\{x_n\}$ is weakly convergent to a solution of GVI(T, Ω).

Proof. From the same proof of Theorem 3.1 in [11], we can prove the following conclusions:

(i) For $x^* \in S^*$ as in (A1), there holds

$$
\lambda_n (\nabla h(x_{n-1}) - \nabla h(x_n) + e_n, x_n - x^*) \geq -\varepsilon_n, \quad \forall n.
$$

(ii) For $x^* \in S^*$ as in (A1), there holds

$$
D_h(x^*, x_n) \leq D_h(x^*, x_{n-1}) - D_h(x_n, x_{n-1}) + \langle e_n, x_n - x^* \rangle + \frac{\varepsilon_n}{\lambda_n}, \quad \forall n.
$$

(iii) For $x^* \in S^*$ as in (A1), there exists an integer $N_0 \geq 1$ such that for all $n \geq N_0$

$$
D_h(x^*, x_n) \leq (1 + \beta_n)D_h(x^*, x_{n-1}) - \frac{1}{1 - \|e_n\|}D_h(x_n, x_{n-1}) + \beta_n,
$$

where $\beta_n = \|e_n\| + \varepsilon_n/\lambda_n$, $\forall n \geq N_0$.

(iv) The following statements hold:

(a) $\lim_n D_h(x^*, x_n)$ exists for $x^* \in S^*$ as in (A1) and hence $\{x_n\}$ is bounded;

(b) $\lim_n D_h(x_n, x_{n-1}) = 0$ and hence $\lim_n \|x_n - x_{n-1}\| = 0$.

Next, we shall prove that $\{x_n\}$ is weakly convergent to a solution of GVI(T, Ω).

Indeed, we first claim that every weak accumulation point of $\{x_n\}$ is a solution of GVI(T, Ω). Let \hat{x} be a weak accumulation point of $\{x_n\}$. Then there exists a subsequence $\{x_{n_j}\}$ weakly convergent to \hat{x}. For each j, x_{n_j} solves (BAP$_{\lambda_{n_j}}$). Thus there exists $u_{n_j} \in T(x_{n_j})$ such that

$$
\langle \lambda_{n_j} (\nabla h(x_{n_j-1}) - \nabla h(x_{n_j}) + e_{n_j}) - u_{n_j}, x_{n_j} - x \rangle \geq -\varepsilon_{n_j}, \quad \forall x \in \Omega_{n_j} \text{ and } \forall n_j.
$$

By the condition $\Omega_{n_j} \supset \Omega$, we have

$$
\langle \lambda_{n_j} (\nabla h(x_{n_j-1}) - \nabla h(x_{n_j}) + e_{n_j}) - u_{n_j}, x_{n_j} - x \rangle \geq -\varepsilon_{n_j}, \quad \forall x \in \Omega \text{ and } \forall n_j. \quad (3.3)
$$

Since $\{x_n\}$ is AF and $\hat{x} \in \Omega$, we have

$$
\langle \lambda_{n_j} (\nabla h(x_{n_j-1}) - \nabla h(x_{n_j}) + e_{n_j}) - u_{n_j}, x_{n_j} - \hat{x} \rangle \geq -\varepsilon_{n_j}, \quad \forall n_j.
$$

This implies that

$$
\varepsilon_{n_j} + \lambda_{n_j} \langle \nabla h(x_{n_j-1}) - \nabla h(x_{n_j}) + e_{n_j}, x_{n_j} - \hat{x} \rangle \geq \langle u_{n_j}, x_{n_j} - \hat{x} \rangle, \quad \forall n_j.
$$

Note that $\lim_n \|x_n - x_{n-1}\| = 0$, and $\{x_n\}$ is bounded. Thus we derive $\lim_n \|\nabla h(x_n) - \nabla h(x_{n-1})\| = 0$ by virtue of (A3). Now utilizing (A2), we have

$$
\limsup_j \langle u_{n_j}, x_{n_j} - \hat{x} \rangle \leq \limsup_j [\lambda_{n_j} (\nabla h(x_{n_j-1}) - \nabla h(x_{n_j}) + e_{n_j}, x_{n_j} - \hat{x} + \varepsilon_{n_j})]
$$

$$
= \limsup_j \lambda_{n_j} \left[(\nabla h(x_{n_j-1}) - \nabla h(x_{n_j}) + e_{n_j}, x_{n_j} - \hat{x} + \varepsilon_{n_j}) \right] \leq \limsup_j M \left[\|\nabla h(x_{n_j-1}) - \nabla h(x_{n_j}) + e_{n_j} \| \|x_{n_j} - \hat{x} + \varepsilon_{n_j} \| \right] \leq \limsup_j M \left[(\|\nabla h(x_{n_j-1}) - \nabla h(x_{n_j})\| + \|e_{n_j}\|) \|x_{n_j} - \hat{x} + \varepsilon_{n_j} \| \right] = 0.
$$

Take $\tilde{x} \in S^*$. By pseudomonotonicity of T, we conclude that there exists $\hat{u} \in T(\tilde{x})$ such that

$$
\liminf_j \langle u_{n_j}, x_{n_j} - \tilde{x} \rangle \geq \langle \hat{u}, \tilde{x} - \hat{x} \rangle.
$$
Since \tilde{x} lies in Ω and from (3.3), we conclude that
\[
\liminf_j (\mu_{n_j}, x_{n_j} - \tilde{x}) \leq \liminf_j [\lambda_{n_j} (\nabla h(x_{n_j}) - \nabla h(x_{n_j}) + e_{n_j}, x_{n_j} - \tilde{x}) + \epsilon_{n_j}]
\]
\[
\leq \limsup_j [\lambda_{n_j} (\nabla h(x_{n_j}) - \nabla h(x_{n_j}) + e_{n_j}, x_{n_j} - \tilde{x}) + \epsilon_{n_j}]
\]
\[
= \limsup_j \lambda_{n_j} \left[(\nabla h(x_{n_j}) - \nabla h(x_{n_j}) + e_{n_j}, x_{n_j} - \tilde{x}) + \frac{\epsilon_{n_j}}{\lambda_{n_j}} \right]
\]
\[
\leq \limsup_j M \left[(\nabla h(x_{n_j}) - \nabla h(x_{n_j})) \| x_{n_j} - \tilde{x} \| + \frac{\epsilon_{n_j}}{\lambda_{n_j}} \right] = 0.
\]
Combining the last two inequalities we infer that
\[
\langle \tilde{u}, \tilde{x} - \tilde{x} \rangle \leq 0.
\]
Again taking into account the paramonotonicity of T and Iusem [12, Proposition 4], we deduce that \tilde{x} is a solution of the GVI(T, Ω).

On the other hand, suppose that \hat{x} and \tilde{x} are any two weak accumulation points of $\{x_n\}$ and that two subsequences $\{x_{n_k}\}$ and $\{x_{n'_k}\}$ of $\{x_n\}$ are weakly convergent to \hat{x} and \tilde{x}, respectively. Then both \hat{x} and \tilde{x} belong to S^*. Thus, by conclusion (iv) (a) we know that both $\lim_n D_h(\hat{x}, x_n)$ and $\lim_n D_h(\tilde{x}, x_n)$ exist, that is, there exist $\tilde{l}, \tilde{l} \in R_+$ such that
\[
\lim_n D_h(\hat{x}, x_n) = \tilde{l} \quad \text{and} \quad \lim_n D_h(\tilde{x}, x_n) = \tilde{l}.
\]
According to Theorem 3.1,
\[
D_h(\hat{x}, x_n) = D_h(\tilde{x}, x_n) + (\nabla h(x_n) - \nabla h(\tilde{x}), \tilde{x} - \hat{x}) + D_h(\hat{x}, \tilde{x}).
\]
From (3.4), we have
\[
\lim_n (\nabla h(x_n) - \nabla h(\tilde{x}), \tilde{x} - \hat{x}) = -\tilde{l} - D_h(\hat{x}, \tilde{x}).
\]
The left-hand side of (3.5) vanishes since \tilde{x} is a weak cluster point of $\{x_n\}$, and since $\nabla h(\cdot)$ is sequentially continuous from the weak topology of X to the weak topology of X by (A4). So we have
\[
\tilde{l} - \tilde{l} = D_h(\hat{x}, \tilde{x}).
\]
Reversing the roles of \hat{x} and \tilde{x}, a similar reasoning leads to $\tilde{l} - \tilde{l} = D_h(\hat{x}, \tilde{x})$, which, combined with (3.6), yields $D_h(\hat{x}, \tilde{x}) + D_h(\hat{x}, \tilde{x}) = 0$, i.e., $D_h(\hat{x}, \tilde{x}) = D_h(\hat{x}, \tilde{x}) = 0$, and hence $\hat{x} = \tilde{x}$, establishing the uniqueness of the weak cluster point of $\{x_n\}$. It follows that $\{x_n\}$ is weakly convergent to a solution of GVI(T, Ω).

Acknowledgements

First author’s research was partially supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, China and the Dawn Programme Foundation in Shanghai. Third author’s research was partially supported by grant from the National Science Council of Taiwan.

References