CMOS exponential function generator

Weihsing Liu and Shen-Iuan Liu

A new CMOS exponential function generator is presented. The proposed circuit is compact, with low power and wide dynamic range. The proposed circuit has been fabricated in a 0.50 \mu m CMOS process. Experimental results show that the output range of the proposed exponential function generator can be more than 15 dB with the linearity error less than ±0.5 dB. The supply voltage is ±1.5 V and the power dissipation is less than 0.4 mW. Experimental results are given to demonstrate the proposed circuit.

Introduction: The exponential function generator is one of the important building blocks in a variable gain amplifier (VGA) [1]. However, unlike the BJT device, there is no intrinsic logarithmic device working in saturation for CMOS technologies. To realise the exponential function, the approximated Taylor's series expansion [2–4] can be utilised. Alternatively, a pseudo-exponential function [5, 6] can be used to generate the required exponential function. In this Letter, a new CMOS pseudo-exponential function generator is presented and the experimental results are given to verify the theoretical analysis.

Design principle and circuit implementation: The pseudo-exponential function \(f(x) \), which can mimic the exponential function \(\exp(2x) \) [6], is expressed as

\[
 f(x) = \frac{1 + x}{1 - x} \exp(2x) \quad \text{if} \quad |x| < 1
\]

(1)

The comparison between the pseudo-exponential function and \(\exp(2x) \) is shown in Fig. 1. The Figure shows that as \(x \) varies from −0.4 to 0.4, the output dynamic range can be more than 15 dB while the difference between \(f(x) \) and \(\exp(2x) \) is within ±0.5 dB.

![Fig. 1 Comparison between function \(f(x) = (1 + x)/(1 - x) \) and \(\exp(2x) \)](image)

The proposed CMOS pseudo-exponential function generator is shown in Fig. 2. Assume that both transistors M1 and M2 are biased in the triode region without body effect. The source currents \(I_1 \) and \(I_2 \) can be expressed as

\[
 I_1 = \frac{K_{n3}}{2} (2(-V_{SS} - V_{Th})V_{DSS} - V_{GD})
\]

(2)

and

\[
 I_2 = I_b + I_n = \frac{K_{n2}}{2} (2(V_{G2} - V_{Th} - V_{GD})V_{DSD} - V_{GSD})
\]

(3)

where \(I_b \) is a reference current, \(K_{n12} \) are the transconductance parameters and \(V_{Th} \) are the threshold voltages of M1 and M2, respectively. The current mirror, M5 and M6, is used to duplicate the current \(I_1 \) as

\[
 I_1 = I_3 = I_4
\]

(4)

Experimental results: The proposed circuit has been fabricated in a 0.5 \mu m CMOS process. The die photograph is shown in Fig. 3. The aspect ratios of all the transistors for the proposed circuit are \((W/L) = (1 \mu m/1 \mu m) \) and the experiments were performed with supply voltages \(V_{DD} = |V_{DD}| = 1.5 \, V \). The experimental results of the proposed pseudo-exponential function generator are shown in Fig. 4. With the reference current \(I_b = 40 \, \mu A \), when \(I_b \) varies from −30 to 15 \mu A, the output dynamic range could be more than 15 dB while the linearity error is within ±0.5 dB and the power dissipation is less than 0.4 mW. The experimental results confirm the theoretical analysis calculated by (9).

![Fig. 2 Proposed exponential function generator](image)
Combined radix-<2 and 1.5 bit/stage pipelined analogue-to-digital converter

B. Najati and O. Shoaei

A new pipeline architecture that combines the radix-<2 and traditional 1.5 bit gain-stages is presented. The 10 bit, 60 MHz, 3 V pipeline analogue-to-digital converter has been designed in a 0.25 μm CMOS technology using digital self-calibration. The converter achieves more than 57 dB SNDR from a 3 V supply (10% lower than nominal 3.3 V) within -40 to +120°C temperature range.

Introduction: The 1.5 bit/stage pipelined analogue-to-digital converter (ADC) is almost the most power efficient architecture, but suffers from a complicated and long digital self-calibration period. This is a drawback because digital self-calibration has become more attractive for modern deep submicron CMOS technologies, in which the implementation of a digital circuit is becoming easier and faster. The radix-<2 architecture has the advantage of having a simpler digital self-calibration but is more sensitive to circuit non-idealities. It also requires a higher number of stages compared to its 1.5 bit/stage counterpart, leading to larger power dissipation. In this Letter, a combined architecture of radix-<2 and 1.5 bit/stage is presented. The few first stages make use of radix-<2 architecture and digital self-calibration, while the remaining stages use 1.5 bit/stage in which no calibration is employed. This architecture minimises the power dissipation, while requiring a simpler digital self-calibration. The presented 10 bit, 60 MHz, 3.3 V ADC consumes 50 mA in 3.0 V supply (10% lower than nominal voltage) and achieves >57 dB SNDR in all process corner cases and temperature ranges. The IM3 of the converter is >60 dB.

Converter architecture: The first four stages have different radix factors as 1.4, 1.8, 1.75 and 1.75 while the remaining nine stages are traditional 1.5 bit/stage. Overall there are 14 raw bits, four from the radix stages and ten from the rest. The ADC output number associated with its full-scale level is 8180 out of which 3 bits are truncated resulting in 1024 levels (10 bit) at the output of the calibration/error-correction unit. Fig. 1 shows the corresponding weights of the raw bits, the ADC architecture, and the digitally calibrated stages. The ten least significant bits come from the overlapped 9 bit-pairs of the 1.5 bit/stage stages. Fig. 1 shows the full-scale range from $-V_{ref}$ to $+V_{ref}$ divided into 8180 codes by the ADC. The corresponding code of $-V_{ref}$ is 0 and that of $+V_{ref}$ is 8180. System level Monte-Carlo simulations using Matlab show that including non-idealities the converter achieves <0.05 LSB DNL and INL after calibration.

Radix-<2 gain-stage architecture and calibration: Fig. 2 shows the input-output transfer function of the first four stages as well as the