Development, Characterization, and Immunotherapeutic Use of Peptide Mimics of the Thomsen-Friedenreich Carbohydrate Antigen

Abstract

The tumor-associated carbohydrate Thomsen-Friedenreich antigen (TF-Ag; Galβ1-3GalNAcα-O-Ser/Thr) is overexpressed on the cell surface of several types of tumor cells, contributing to cancer cell adhesion and metastasis to sites containing TF-Ag-binding lectins. A highly specific immunoglobulin G monoclonal antibody (Ab) developed to TF-Ag (JAA-F11) impedes TF-Ag binding to vascular endothelium, blocking a primary metastatic step and providing a survival advantage. In addition, in patients, even low levels of antibodies to TF-Ag seem to improve prognosis; thus, it is expected that vaccines generating antibodies toward TF-Ag would be clinically valuable. Unfortunately, vaccinations with protein conjugates of carbohydrate tumor-associated Ags have induced clinically inadequate immune responses. However, immunization using peptides that mimic carbohydrate Ags such as Lewis has resulted in both Ab and T-cell responses. Here, we tested the hypothesis that vaccinations with unique TF-Ag peptide mimics may generate immune responses to TF-Ag epitopes on tumor cells, useful for active immunotherapy against relevant cancers. Peptide mimics of TF-Ag were selected by phage display biopanning using JAA-F11 and rabbit anti-TF-Ag Ab and were analyzed in vitro to confirm TF-Ag peptide mimicry. In vitro, TF-Ag peptide mimics bound to TF-Ag–specific peanut agglutinin and blocked TF-Ag–mediated rolling and stable adhesion of cancer cells to vascular endothelium. In vivo, the immunization with TF-Ag–mimicking multiple antigenic peptides induced TF-Ag–reactive Ab production. We propose that this novel active immunotherapy approach could decrease tumor burden in cancer patients by specifically targeting TF-Ag–positive cancer cells and blocking metastasis.

Neoplasia (2009) 11, 780–792

Abbreviations: Ab, antibody; Ag, antigen; MAP, multiple antigenic peptide; Ova, ovalbumin; PNA, peanut agglutinin; SPR, surface plasmon resonance; TF-Ag, Thomsen-Friedenreich antigen

Address all correspondence to: Dr. Kate Rittenhouse-Olson, Department of Biotechnical and Clinical Laboratory Sciences, 44 Cary Hall, 3635 Main St, Buffalo, NY 14214.
E-mail: krolson@buffalo.edu

The authors thank the Department of Defense Breast Cancer Research Program Predoctoral Fellowship (J.H.-M.) and the National Institute of Allergy and Infectious Disease grant R15 AI 49210-01 for financial support (K.R.-O.). VVG, was supported by the funds from the VA BLR&D Service. O.V.G. was supported by the American Heart Association grant 0830287N. R.R. is also thankful to the Natural Sciences and Engineering Research Council of Canada for a Canada Research Chair in therapeutic chemistry.

Current address: Department of Biochemistry, Emory University, Atlanta, GA.
Received 19 March 2009; Revised 22 April 2009; Accepted 24 April 2009

Copyright © 2009 Neoplasia Press, Inc. All rights reserved 1522-8002/09/$25.00
DOI 10.1593/neo.09504
Introduction

The tumor-associated carbohydrate antigen (Ag) Thomsen-Friedenreich (TF-Ag) is present on tumor cells including those of breast, lung, colon, bladder, and prostate [1–5]. TF-Ag, the core 1 disaccharide Galβ1-3GalNAcα–O-Ser/Thr [1–3], remains cryptic on normal cell membranes, covered by extended carbohydrate residues preventing exposure of the epitope to the immune system [1–3], but becomes exposed on cancer cell surfaces. An important role for TF-Ag has been recognized in the process of cell adhesion and metastasis [1–7]. TF-Ag binding moieties were found in sites of metastasis, offering an explanation for the correlation between TF-Ag surface expression on cancer cells and tumor aggressiveness and metastasis [4,6,7].

The human antibody (Ab) repertoire is known to contain low levels of anti-TF-Ag antibodies, mainly of the immunoglobulin (Ig) M isotype [1,2,8–12]. Patients with higher levels of anti-TF-Ag Ab have a better prognosis than patients with lower levels [1,2,8–13]. Thus, it seems that naturally formed antibodies to TF-Ag may have a beneficial effect even at relatively low levels. Additional indications that anti-TF-Ag could be clinically important come from animal experiments on spontaneous breast cancer metastasis, in which Ab to TF-Ag blocked metastasis and improved survival [6]. Thus, the fact that some patients generate Ab responses to TF-Ag that could be associated with better prognosis inspires research into active immunization approaches to supply anti-TF-Ag Ab to the patient.

Attempts to make Ab to TF-Ag in cancer patients began with a TF-Ag vaccine composed of blood group type O-MN red blood cell–derived glycoproteins, which resulted in improved breast cancer patient survival, although only small amounts of IgM Ab were produced [14]. Studies with protein conjugates of Ags related to TF-Ag, Tn, and sialyl Tn in colon cancer and sialyl Tn in breast cancer patients [15–18] induced low level Ab responses, which were still IgM-dominant, and some clinical responses were observed in these patients. These results, although promising, indicated no memory development, whereas one of the main reasons to use active immunization rather than passive transfer is the anticipation of long-term memory induction for protection from recurrences.

Peptide mimicry offers an alternative method for increasing carbohydrate Ag immunogenicity [19–21]. In cellular immunologic responses to peptide mimics and subsequent cytotoxic responses, recent results show that T cells primed by peptide mimics can subsequently react with carbohydrate moieties, potentially inducing cellular responses against carbohydrate epitope-bearing tumor cells [22–27], indicating that vaccinations with peptide mimics may be able to generate improved responses to carbohydrate epitopes on tumor cells. Kieber-Emmons et al. [22] and Luo et al. [23] used mimicry of Lewis Ags by peptides to induce enhanced immune responses and elicited T-cell–dependent versus T-cell–independent responses to the Ag [22,23]. In addition, studies with peptide mimics of bacterial carbohydrate Ags showed structural data supporting the ability of peptides to mimic carbohydrate Ags, and these mimics were prepared as conjugates for vaccine studies against the bacteria [28–30].

It seems that generation of an active immune response to TF-Ag using peptide mimics holds the potential to be clinically useful in conjunction with current therapies and, unlike passive transfer of Ab, to prevent long-term recurrence by generating an effective immune memory in the patient. For these reasons, the focus of our study was on developing and characterizing peptides that function as mimics of the TF-Ag structure in vitro with the ultimate goal of using these peptide mimics in vaccines for stimulating responses to TF-Ag.
The 36-bp insert of interest was identified and translated to determine the unique 12-amino acid sequence of the selected phage. Peptides were produced containing the 12 amino acids plus the next three residues at the C-terminus in the phage sequence (GGG), and a cysteine or serine residue was added for conjugation purposes.

Solid-Phase Peptide Synthesis and Analysis

Solid-phase peptide synthesis (SPPS) was used to produce 16-amino acid peptides with Fmoc-based chemistry using standard protocols [37,38]. The peptides were purified using reverse-phase high-performance liquid chromatography (HPLC) on a Vydc C18 column (Grace Davison, Deerfield, IL). The purity of the peptides was confirmed by analytical HPLC, and the identity was confirmed by matrix-assisted laser desorption/ionization—time of flight. Additional peptides were purchased from Sigma-Genosys (The Woodlands, TX) and Bio-Synthesis, Inc (Lewisville, TX). Multiple antigenic peptides (MAPs) were produced by SPPS using Fmoc chemistry onto a branched lysine core resulting in eight 15-mer peptides presented on one structure (Figure 1). Previous studies have successfully produced TF-Ag conjugated to the MAP core [39,40]. Inhibition ELISAs was used to test ability of single peptide mimics to inhibit binding of Ab to TF-Ag as previously mentioned. Six different MAPs were produced as described, five containing selected TF-Ag mimicking sequences and one containing a negative control, using an ovalbumin (Ova) sequence (Table 1). Peptides were stored at −20°C under nitrogen in lyophilized form. Corresponding linear peptides were used in ELISAs.

Surface Plasmon Resonance Using Biacore

Binding kinetics were determined by surface plasmon resonance (SPR) using a BIACORE X biosensor system (Biacore, Piscataway, NJ) and defined experimental design [41,42]. JAA-F11 Ab to TF-Ag was immobilized on CM5 dextran sensor chips using amine-coupling chemistry reagents (Biacore). Approximately 10,000 resonance units (RU) of JAA-F11 was immobilized, providing an active surface of 3000 to 4000 RU corresponding to 3000 to 4000 pg/mm². All measurements were carried out in HBS-EP buffer (0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% surfactant P20; Biacore). Surface interactions were performed at 25°C at flow rates of 5 or 10 μl/min using a reference cell versus an experimental cell. RU values for Ag binding ranged from 5 to 250. Surface regeneration was performed using 10 mM HCl or 10 mM glycine pH 2.0 at 50 μl/min. Kinetic parameters for the binding of JAA-F11 to peptide D2 were determined using the BIAsystem programs.

In Vitro Adhesion Assays

Cell lines and cultures. The MDA-MB-435 human metastatic breast cancer cell line was kindly provided by Dr. J.E. Price (MD Anderson Cancer Center). MDA-MB-435 cells were maintained on plastic in RPMI-1640 medium supplemented with L-glutamine, 10% fetal bovine serum, sodium pyruvate, and nonessential amino acids. The HBME-1 human bone marrow endothelial cell line was kindly provided by Dr. K.J. Pienta (University of Michigan) and grown as previously described [43].

In vitro parallel flow chamber assay. The adhesion of MDA-MB-435 cells to HBME-1 monolayers was studied in vitro with and without inhibitory molecules in a parallel plate laminar flow chamber as described previously [44]. Data are presented as the means ± SD of two independent experiments.

Prediction of Major Histocompatibility Complex Binding

SYFPETITHI [45], BIMAS [46], and RANKPEP [47] databases were used for major histocompatibility complex (MHC) binding algorithms.

Sequence Homology

The Basic Local Alignment Search Tool (BLAST) database was used [48] for sequence comparison to known proteins. The amino acid sequences were entered into the protein short, nearly exact sequence comparison database using limitation to Homo sapiens and Mus musculus organism sequences.

Immunization Protocols

A vaccination protocol involving 200 Balb/c mice divided evenly into eight groups was used (Table 1). All blood draws were obtained by retro-orbital bleed, under 3% isoflurane anesthesia. To prepare each vaccination mixture, 3 mg of MAP was dissolved in 1.5 ml of sterile-filtered PBS (2 mg/ml) and, 1.2 ml of Alum adjuvant (aluminum hydroxide at 40 mg/ml; Pierce) was added dropwise. After mixing for 30 minutes, 0.3 ml of inactivated Bordetella pertussis suspension at 200 × 10⁷ organisms per milliliter (Wako Chemicals, Richmond, VA) was added to the tube and mixed to homogeneity. One hundred microliters was injected into each mouse, divided into four sites at the back. Thus, each mouse received 100 μg of MAP plus 1.6 mg of Alum and 2 × 10⁹ B. pertussis organisms as adjuvant per
immunization [49,50]. A primary vaccination and three booster immunizations at 2-week intervals were given to each mouse. After the prebleed, four additional blood draws were obtained, 2 weeks after each immunization (Table 1). All animal experimentation was done using approved institutional protocols, in a facility approved by the Association for Assessment and Accreditation of Laboratory Animal Care.

Serum Analysis

Indirect ELISAs were performed on Immunon microwell plates: for the first group of mice, sera from all five blood draws from each of the 200 mice were tested for IgG and IgM Abs in triplicate on both TF-Ag–BSA–coated plates (1:50), on linear peptide–coated plates (1:200, 1:400, and 1:800) corresponding to the MAP used for immunization and on Ova linear peptide–coated plates for IgG and IgM Abs (1:200, 1:400, and 1:800). Sera dilutions were incubated for 2 hours at 37°C; the plates were washed three times with 1× TBS-Brij, and anti–mouse IgG alkaline phosphatase conjugate (1:1000; Sigma) was added and incubated at RT for 1 hour. The plates were washed three times as previously, and p-nitrophenyl phosphate substrate (Sigma) was added for 1 hour, after which the plates were read at 405 nm on a spectrophotometer. The plates were washed three times as previously mentioned, and anti–mouse IgM–horseradish peroxidase conjugate (1:4000; Sigma) was added to each plate and incubated for 1 hour at RT. The plates were washed three times and O-phenylenediamine substrate (Sigma) was added for 1 hour and read at 450 nm.

Statistical Analyses

The averages of the triplicates were determined for each mouse in each group and used as the unit of analysis. Groups were then compared by Student’s *t* tests. This allowed for comparison of the Ab levels from preimmunization to weeks 6 and 8 within each group, as well as the levels between groups. To simplify the analysis, the higher value of week 6 or week 8 was used as the postimmunization level comparisons. In the analysis of the serum Ab response by enzyme immunoassays, to describe the observed variability in the data and test for difference between groups, a mixed linear model was fit to each end point, optical density (OD) IgG, and OD IgM. Once the model was fit, specific linear contrasts based on the model parameters were constructed and used to test for mean differences between the two control groups (Ova and PBS) and each of the six experimental groups (B1, B3, C1, D1, D2, and Mix) at both 6 and 8 weeks. To control for multiple testing, Bonferroni-adjusted *P* values were computed for all 24 hypothesis tests, thereby bounding the experiment-wise error rate at 0.05 per end point. Standard diagnostic tools were used to assess model fit. Also computed for each end point was the response rate by group based on the absolute change for a variety of cut points. Microsoft Excel (Microsoft, Redmond, WA), Minitab Release 14 (Minitab, Inc., State College, PA), and SAS version 9.0 statistical software (SAS, Cary, NC) were used for all analyses. Standard diagnostic plots for normal-based models were used in all analyses, and model fit was deemed adequate.

Results

Biopanning, Mimic Isolation, and Selection

Biopanning with mouse monoclonal Ab and rabbit Ab eluted with TF-Ag decreased the likelihood of nonspecific binding to Ab. To carry out successful biopanning, a titer of 1 to 2 × 10^9 plaque-forming units (PFUs)/100 μl or greater was required with high stringency conditions. The percent recovery of binding phage increased with each round of biopanning. Final phage amplification and selection were performed with immunoprobing of titered phage followed by positive phage amplifications.

Amplification of isolated phage was needed to obtain a sufficient amount of phage for subsequent experiments. The phage pellet was titered to determine the number of PFUs. Successful phage titers, appearing as plates with well-separated colonies, were obtained using dilutions from 1 × 10^8 to 1 × 10^11. Typical titers were in the range of 3 to 5 × 10^9 PFU/ml.

To isolate phage containing TF-Ag mimics, a transfer of phage to nitrocellulose from Luria Bertani plates with well-separated colonies was performed, and the membrane was incubated with JAA-F11 Ab to TF-Ag, followed by anti–mouse enzyme-conjugated Ab and corresponding substrate for color development. Specific colonies corresponding to phage mimics appeared purple, whereas phage that did not mimic, as well as wild-type phage, appeared white. Positive colonies were plucked from the titer plates and amplified again to generate distinct positive phage clones that mimic TF-Ag.

Immunoblot analysis. To analyze phage pools selected by biopanning, four immunoblots were performed. The pooled phage mixture blotted at different concentrations on nitrocellulose was probed with JAA-F11 Ab (Figure 2A), rabbit polyclonal anti–TF-Ab (Figure 2B), or PNA, a TF-Ag–binding lectin (Figure 2C). In each case, the immunoblot demonstrated specific binding to the positive phage pool and not to the negative phage pool. Next, the phage pool was probed with an isotype control IgG3 Ab, 4A11, specific for pneumococcal saccharide, compared with JAA-F11 binding (Figure 2D). These experiments demonstrated that pooled phage contained specific phage isolates able to mimic TF-Ag and bind mouse monoclonal anti–TF-Ag JAA-F11 Ab, rabbit polyclonal anti–TF-Ag Ab, and TF-Ag–specific PNA but not a control Ab.

Individual phage clones were selected using transfer immunoblots, in which positively reacting phage were plucked and amplified to produce individual positive phage clones. Figure 2 shows the blot quantitation of five individual phage clones and their reactivity with JAA-F11 Ab (Figure 2E), rabbit Ab to TF-Ag (Figure 2F), and PNA lectin (Figure 2G). Phage clones were tested at the following: B1 and B3—5 × 10^9 PFU/ml, C1 and D2—4 × 10^9 PFU/ml, D1—3 × 10^9 PFU/ml, E—6 × 10^13 PFU/ml. A representative of multiple experiments is shown. These experiments show that selected individual phage clones are creating a peptide conformation similar enough to TF-Ag to bind TF-Ag–specific Abs and lectin, supporting the theory that they mimic TF-Ag.

Inhibition ELISA. To further show that selected phage clones do mimic TF-Ag, inhibition ELISA was performed using JAA-F11 Ab. Phage inhibited JAA-F11 binding to TF-Ag–coated plates by varying amounts (Table 2). D2 phage showed the highest amount of inhibition (49%). These experiments indicated that three of the five phage clones at 5 μg/ml in solution bound JAA-F11 well enough to prevent binding of JAA-F11 to TF-Ag, the original target carbohydrate Ag. A representative of three experiments is shown.

Phage Sequencing

To identify the peptides that were able to mimic TF-Ag in immunoblot analysis and inhibition ELISA experiments, the selected phage
Figure 2. Immunoblot quantitation of bound pooled phage (A–D) and bound individual phage clones (E–G). (A–D) Pooled positive and negative phage (at 2.8×10^{10} and 2.2×10^{10} PFU/ml, respectively) were diluted 1:1, 1:2, 1:4, and 1:8. (E–G) Phage clones (B1, D2, B3, C1, D1, E) were diluted 1:1, 1:2, and 1:4 for probing with Ab. (A and E) JAA-F11 monoclonal Ab (20 μg/ml) reactivity. (B and F) Rabbit polyclonal sera to TF-Ag (1:50). (C and G) PNA lectin (200 μg/ml) reactivity. (D) JAA-F11 and an isotype matched control (IgG3). Blots were quantitated by densitometry and reflected density of the spots represented on the y-axes. TF-Ag–BSA was used as a positive control; TBS-BSA was used as the negative control.
Evidence of TF-Ag Mimicry by Selected Phage
Evidence of TF-Ag Mimicry by Synthetic Peptides

785

++
in vitro

Vol. 11, No. 8, 2009 TF-Ag Peptide Mimics for Active Immunotherapy Heimburg-Molinaro et al.
support.
Single peptides corresponding to the 12−M, in the submillimolar range of binding (Figure 3
MHC. With regard to humans, the MHC
NT NT
++
+

In Vitro
Peptide synthesis. Short single peptides corresponding to the 12−amino acid phage insert plus the 4−amino acid spacer were produced as 16-mer peptides. Cysteine was inserted in place of serine for ease of conjugation to carrier proteins. Eight peptides of the same sequences were linked to a 7-branched lysine core to produce MAP peptides (Figure 1) based on phage sequences that were found to act as mimics and a negative control MAP from Ova (SIINFEKLGAAGGG).

In Vitro Evidence of TF-Ag Mimicry by Selected Phage

Peptide synthesis. Short single peptides corresponding to the 12−amino acid phage insert plus the 4−amino acid spacer were produced as 16-mer peptides. Cysteine was inserted in place of serine for ease of conjugation to carrier proteins. Eight peptides of the same sequences were linked to a 7-branched lysine core to produce MAP peptides (Figure 1) based on phage sequences that were found to act as mimics and a negative control MAP from Ova (SIINFEKLGAAGGG).

In Vitro Evidence of TF-Ag Mimicry by Synthetic Peptides

Inhibition ELISAs. The purified D2 peptides were used in inhibition ELISA experiments as described in the previous sections. Inhibition, indicating specific binding, was seen with JAA-F11 Ab (up to 43%), rabbit Ab to TF-Ag (10%), and PNA (18%). These experiments show that D2 peptide is able to mimic TF-Ag by partially inhibiting the binding of Abs and a lectin known to bind TF-Ag with high specificity. When the B3 peptide was synthesized and tested with JAA-F11, it was also able to partially inhibit binding (50%). The levels of inhibition of rabbit Ab and PNA by D2 were not as high, likely because of the difference in affinity of the Ab for the univalent peptide versus the multivalent phage conjugate and multivalent TF-Ag conjugate, as the TF-Ag conjugate inhibited JAA-F11 Ab by 99% but only inhibited rabbit Ab by 62% and PNA by 14%.

Immunoblots. Immunoblots were performed as previously mentioned on peptides and were found to also bind JAA-F11 (data not shown).

Surface Plasmon Resonance
To determine the affinity of JAA-F11 Ab for a peptide mimic, SPR was performed using the Biacore system. An affinity, the K_D (M) for JAA-F11 binding to the single D2 peptide, was determined to be 5.73×10^{-4} M, in the submillimolar range of binding (Figure 3A).

In Vitro Adhesion
An in vitro adhesion system was used to demonstrate that peptide mimics, similar to TF-Ag [4] and Ab to TF-Ag [6], could block the adhesion of metastatic cancer cells to vascular endothelial cells, as a model of the in vivo mechanism of action. The D2 peptide was able to significantly inhibit rolling adhesion by approximately 43% and stable adhesion by approximately 71%, indicating that the binding of D2 peptide to the natural TF-Ag ligands on the vascular endothelium prevented TF-Ag expressed on the tumor cells from binding (Figure 3B). Importantly, when JAA-F11 Ab was used in this model system, it also significantly blocked rolling and stable adhesion of cancer cells to the endothelial cells [6]. In vivo, JAA-F11 significantly reduced metastasis of breast tumor cells, and the adhesion system provides a mechanism of action for JAA-F11 blocking the adhesion of cancer cells to metastatic sites [6]. Additional peptide mimics are currently being tested in this functional model system of adhesion.

MHC Prediction
Using MHC binding prediction databases, it was determined that the isolated peptide sequences are likely to be bound and presented by many MHC molecules, in both mouse and human and by both class I and class II molecules (data not shown). This indicates that peptides used in immunizations have the ability to be presented by MHC molecules to T cells for potential reactivity. Of the mice used in this study, the Balb/c strain harbors H2.d MHC molecules and the C3H strain harbors H2.K MHC. With regard to humans, the MHC molecules able to bind these peptides in the search are common human leukocyte antigen A and B (HLA-A and HLA-B) classes in the population, giving relevance to this search [51]. The MHC predictions are based on known binding algorithms and thus accurately reflect the ability of the peptide to bind and be presented in vivo in a large portion of the population, with additional in vivo support.

For relevance, the maximal scores given for these peptide mimics were compared with the scores found for another published peptide mimic of a carbohydrate tumor Ag, Lewis Y. This peptide mimic (GGIYWRYDIYWRYDIYWRYD) used in immunizations was shown to elicit IgM and IgG antibodies and to induce carbohydrate reactive T cells [25]. Therefore, the maximal binding scores to class I molecules of this peptide epitope were compared, and all MHC molecules listed are predicted to bind at least one peptide mimic. This information predicts that the peptides, when injected in mice, can be presented by at least several of the haplotypes present.

MAPs and Linear Peptides
After confirming the correct sequences of the MAPs and linear peptides by HPLC and mass spectrometry analyses, immunoblots
were performed to determine the reactivity with JAA-F11 Ab. JAA-F11 binding was seen to B1, D2, and C1 MAPs, whereas a lack of binding was seen to B3, D1, and Ova MAPs (data not shown). All five linear peptide mimicking sequences were found to bind to JAA-F11 under optimized experimental conditions (data not shown) and were used for the subsequent sera analyses.

Immunization

Serum analysis. Linear peptides corresponding to the same sequences used in the MAPs were used. The preimmunization (Pre), week 6, and week 8 sera were tested in triplicate at 1:200, 1:400, and 1:800 on linear peptide–coated plates (corresponding to the MAP used for immunization) as well as Ova linear peptide–coated plates for IgG and IgM Abs. All five linear peptide mimicking sequences were found to bind to JAA-F11 under optimized experimental conditions (data not shown) and were used for the subsequent sera analyses.

Figure 3. (A) Biacore (SPR) analysis of JAA-F11 binding to D2 peptide. Table shows binding kinetics for the binding of JAA-F11 to D2 peptide (using BiaEval software), and figure displays the range of D2 peptide concentrations binding to JAA-F11. JAA-F11 Ab coupled to a CM5 sensorchip was used to detect the binding of D2 to the Ab. The sensorgram graph is representative of several binding experiments, showing the dose–response of peptide binding to JAA-F11 versus time. (B) Two peptide mimics blocking rolling and stable adhesion of MDA-MB-235 human breast cancer cells to HBME-1 human bone marrow endothelial cells in vitro. Adhesion of MDA-MB-435 cells to HBME-1 cells using a parallel plate laminar flow chamber was assessed. The percent rolling MDA-MB-435 cells and number of stably adherent cells per field determined during 1- and 5-minute periods, respectively, in at least three different observation fields for each experimental setting. Control indicates no peptide; Negative, nonrelated peptide. Data are presented as mean ± SEM of two independent experiments. *D2 significant inhibition, corresponding to 43% inhibition of rolling and 71% inhibition of stable adhesion.
amounts of Ab; D1, B1, and the mixture of peptides caused moderate production of Ab; and PBS alone did not result in Ab production. The anti–TF-Ag response was tested with sera at a 1:50 dilution. Statistically significant increases from preimmunization to postimmunization were seen within each group (Figure 4, A–D) showing that the immunization protocol was effective in eliciting an immune response by itself because increases were seen in the negative groups as well. Comparisons between groups were also made (Figure 4, E–H). Both IgG and IgM productions were tested. These dot plots allow for the distribution of the responses in each group to be seen as well as the mean of each group. Table 3 summarizes this information.

Additional line graphs visualize the response trends over the time points tested in each group. To further and more accurately analyze the Ab response, a more complex statistical analysis was performed, as explained previously. This model allowed for the consideration of different baseline levels of Ab and statistically compared the differences among groups using more stringent constraints. Therefore, fewer groups showed a significant response over the controls groups by this analysis. For IgG Ab to TF-Ag, statistically significant results were found between B1 and each of the control groups at both the 6- and 8-week time points (P < .0001; Figure 5A). All other comparisons with the control groups were found to be nonsignificant. For IgM Ab to TF-Ag, statistically significant results were found between C1 and Ova (P = .0312) and between C1 and PBS (P = .0012) at the 6-week time point. At the 8-week time point, significant differences were found between C1 and Ova (P = .0007), C1 and PBS (P < .0001), and B1 and PBS (P = .0016; Figure 5B). All other comparisons with the control groups were found to be nonsignificant. Whereas fewer groups were found to be significant, the stringency of this model suggests that the groups that are significant are representing a true and valid anti–TF-Ag response to the peptide mimics.

The previously mentioned analyses at 1:50 consider each group as a whole by averaging the group responses and then performing analyses. However, individual mouse responses can vary, and therefore, examining the responses of individual mice was performed. The most accurate method to analyze each mouse singly was to quantitate the absolute change in OD, correcting for the differences in baseline Ab levels among mice. The absolute changes in OD for IgG and IgM Abs for each mouse were determined and represented as individual points on a dot plot (Figure 4, A–H). The percentage of mice in each group, which changed by a given amount, was counted. At the 0.2 OD change cut point, definite differences between groups are seen. For IgG Ab to TF-Ag, B1, C1, and D1 groups all have percentages of mice that are considerably higher than those in control Ova and PBS groups. B3, D2, and Mix groups, although not as high as B1, C1, and D1 groups, still have double the number of mice that responded with greater than 0.2 OD change over the negative groups (Figure 6A). For IgM Ab to TF-Ag, B1, C1, and D1 groups all have...
Table 3. Immunized Sera Tested for Production of Reactive Ab to TF-Ag (1:50 Dilution).

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre vs Post</th>
<th>Significance: IgG to TF-Ag ($P < .05$)</th>
<th>Fold Increase in OD from Pre to Post</th>
<th>Significance: IgM to TF-Ag ($P < .05$)</th>
<th>Fold Increase in OD from Pre to Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>1.48 x 10^{-6}</td>
<td>4-fold</td>
<td>4.02 x 10^{-5}</td>
<td>2.2-fold</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>7.03 x 10^{-6}</td>
<td>4.2-fold</td>
<td>8.98 x 10^{-5}</td>
<td>2.2-fold</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>7.78 x 10^{-7}</td>
<td>6.7-fold</td>
<td>2.44 x 10^{-6}</td>
<td>3.2-fold</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>1.05 x 10^{-4}</td>
<td>7.5-fold</td>
<td>1.11 x 10^{-5}</td>
<td>2.7-fold</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>6.67 x 10^{-11}</td>
<td>2.7-fold</td>
<td>7.74 x 10^{-4}</td>
<td>2.3-fold</td>
<td></td>
</tr>
<tr>
<td>Ova</td>
<td>9.47 x 10^{-8}</td>
<td>6.7-fold</td>
<td>1.67-fold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td>3.56 x 10^{-10}</td>
<td>2-fold</td>
<td>.048</td>
<td>1.3-fold</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>1.86 x 10^{-7}</td>
<td>1.9-fold</td>
<td>.68</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Groups: (Post vs Post) Significance: IgG to TF-Ag ($P < .05$) Fold Increase from Post to Post Significance: IgM to TF-Ag ($P < .05$) Fold Increase in OD from Pre to Post

D2 vs Ova	NS	NS	NS	NS
D2 vs PBS	NS	NS	NS	NS
B3 vs Ova	NS	NS	NS	NS
B3 vs PBS	NS	NS	NS	NS
C1 vs Ova	.178	1.24-fold	.007	1.64-fold
C1 vs PBS	.093	1.35-fold	5.7 x 10^{-5}	2.16-fold
B1 vs Ova	.013	2-fold	.18	1.3-fold
B1 vs PBS	.005	2.18-fold	.002	1.7-fold
D1 vs Ova	.42	1.14-fold	.404	1.2-fold
D1 vs PBS	.04	1.24-fold	.036	1.6-fold
Mix vs Ova	.29	1.15-fold	.87	1.02-fold
Mix vs PBS	.057	1.26-fold	.049	1.35-fold
Ova vs PBS	.45		.18	

Using Student's t test (paired) to determine significance between Pre and Post (using the highest value of bleed 3 or 4) and Post to Post in each group, and the averages of each group used. No statistical calculations were used to compare fold differences in this case. Insignificant values for D2 and B3 partially reflect the lower baseline level in these groups compared with the controls. NS indicates not significant.
Figure 5. IgG (A) and IgM (B) line graphs of the average Ab level to TF-Ag tested at 1:50 of all mice in each group during three time points. Statistically significant results were found between B1 and each of the control groups (Ova and PBS) at both time points ($P < .0001$). All other comparisons with the control groups were found to be nonsignificant. At time point 6, statistical significant results were found between C1 and Ova ($P = .0312$) and between C1 and PBS ($P = .0012$). At time point 8, significant differences were found between C1 and Ova ($P = .0007$), between C1 and PBS ($P < .0001$), and between B1 and PBS ($P = .0016$). All other comparisons with the control groups were found to be nonsignificant.

Figure 6. (A) Absolute changes in OD for IgG Ab to TF-Ag in each mouse per group, mean = ⊗. (B) Absolute changes in OD for IgM Ab to TF-Ag in each mouse per group, mean = ⊗.
percentages of mice that are considerably higher than the control Ova and PBS groups. B3, D2, and Mix groups have comparable numbers of mice that responded with greater than 0.2 OD change compared with the negative groups (Figure 6B). Considering the fact that B1, C1, and D1 groups have appreciably more mice with 0.2 OD change in Ab levels and the cut points used in this analysis, these data suggest that these groups contain mice that exhibited significant responses, representing true and valid responses to peptide mimics.

Discussion

In this study, we have used TF-Ag, which is a pan-carcinoma tumor cell surface carbohydrate Ag, as the target for an immune response. By developing peptide mimics of the carbohydrate structure for use in vaccines, it is anticipated that we can begin a process that will ultimately result in a clinically relevant immune response to TF-Ag epitope-expressing tumor cells.

Through several methods of *in vitro* characterization of selected peptides, it was shown that mimicry of TF-Ag occurs. Abs to TF-Ag, both mouse monoclonal and rabbit polyclonal, as well as PNA lectin known to bind TF-Ag, bound to the peptide mimics as well. The peptides partially inhibited the binding of TF-Ag Abs to TF-Ag disaccharide-protein conjugates by ELISA. The D2 peptide significantly inhibited stable and rolling adhesion of TF-Ag epitope-expressing tumor cells to human endothelial cells. These data may offer a potential mechanism for Ab generated toward TF-Ag *in vivo* in blocking cell-cell adhesion and thus prevent metastasis to distant sites.

The peptide mimics may further function to stimulate an immune reaction that responds to TF-Ag epitope-expressing tumor cells. BLAST analysis showed that an immune response to these peptides should not cause an autoimmune reaction, and MHC binding prediction analysis showed that these peptides are likely to be presented.

To achieve successful peptide mimic immunizations, Ab that binds TF-Ag should be produced. Four different analyses were used to ensure comprehensive characterization of the Ab responses, as seen in some peptide mimic-immunized groups, albeit low levels. Statistically significant increases in Ab levels were seen from preimmunization to postimmunization sera. This is an important result, showing that it
is possible to create Ab to TF-Ag peptide mimics, which reacts with TF-Ag itself. Each peptide elicited varying levels of response, signifying that not all peptides are equal mimics in vivo. This was not unexpected, given that the peptides do differ greatly in sequence and therefore chemical character. It is also not surprising that the peptides behave differently in in vitro assays than in the in vivo environment. Because of these differences, it was important to immunize with all of the potential peptide mimics regardless of their in vitro activity. B1, which did not react highly with JAA-F11 Ab in vitro, displayed the highest immunogenic response in vivo. Peptide immunizations produced moderate to high levels of Ab reactive with the immunized peptide itself, showing that the peptide immunogenicity was adequate, and any lack of TF-Ag Ab was not due to suboptimal immunization conditions. There was little to no cross-reactivity with the negative Ova peptide, showing that Ab responses were peptide sequence-specific. Little to no Ab was seen at 1-, 2-, and 4-week time points, but at the 6- and 8-week time points, significant Ab levels were generated. The most promising peptide before the in vivo immunizations was D2. The lack of success of this peptide MAP led to subsequent studies that showed that the D2 peptide is relatively unstable, thus the peptide could have been modified or broken down during the course of the immunization protocol and not able to sufficiently act as a mimic in vivo. This eventual loss of reactivity seen after long-term storage was due to the apparent oxidative modifications to the peptide. This corresponded to a change in the molecular weights of the peptide as demonstrated by matrix-assisted laser desorption/ionization–time of flight (data not shown). One modification was an increase in 32 in the molecular weight, which could be attributed to addition of two oxygen atoms to the peptide by oxidative reactions. Subsequent electrospray ionization–mass spectrometry analysis suggested that either the tryptophan or proline residue of the D2 peptide was modified (data not shown), suggesting that either of these residues is critical for binding.

These results, showing Ab reactive to TF-Ag after peptide immunizations, is encouraging for the use of peptide mimics. The fact that IgG Abs were generated is a positive sign of T-cell involvement, and T-cell immunity relative to carbohydrates has attracted great attention in recent years [52]. If the response to TF-Ag peptide mimics can be increased using better peptide mimics or other improved techniques to generate higher levels of TF-Ag–reactive Ab with T-cell involvement, this research would have greater applicability. The creation of an immune response to TF-Ag through peptide mimics can be used to decrease the tumor burden of cancer patients, concurrent with leading treatments. The added benefits of this technique include the ability to differentially target TF-Ag–positive tumor cells and block metastatic adhesion through the development of Ab to the specific carbohydrate Ag.

The current data illuminating the development and characterization of peptide mimics of TF-Ag provide in vitro support for the functionality of these mimics and continued study of mimics for vaccine development directed at TF-Ag epitope-expressing tumor cells. On further studies to improve the peptides, including crystallization and modeling analysis, vaccination schemes using peptide mimics have the ability to be applied for the prevention of recurrence of TF-Ag epitope-expressing adenocarcinomas by generating an immune response that targets and blocks TF-Ag. The widespread applicability of the use of peptide mimics of TF-Ag makes it a significant area of research for further exploration. Owing to the importance of breaking tolerance to TF-Ag, a second vaccine approach will be attempted, which will use constructs containing TF-Ag mimicking peptides linked to the mucin-1 peptide and additionally linked to one or more immune-enhancing agents including C3d, the T-cell–stimulating peptides, zwitterionic constructs, and Toll-like receptor agonists. The peptides will facilitate effective T helper cell response, reacting with multiple HLA molecules. C3d will facilitate activation of B cells without T-cell help by targeting CD21, the C3d receptor, on splenic marginal zone B cells, and follicular dendritic cells [53]. Zwitterions will generate Toll-like receptor agonists, and these will facilitate uptake and activation of Ag-presenting cells [54,55]. These additional vaccine strategies could improve the immunogenicity of the peptide mimics toward the TF-Ag tumor epitope.

Acknowledgments
The authors thank Brian Lang for aiding in the Biacore analysis, Chad Vezina for help in the phage sequencing method, Adrian Grozav for electrospray ionization–mass spectrometry analysis, and Stephen Koury for use of the slot blot apparatus.

References
Peptides that mimic the group B streptococcal type III capsular polysaccharide antigen.

