CD Exciton Chirality Method for Determination of the Absolute Configuration of \(\beta\)-Hydroxy-\(\alpha\)-Amino Acid Derivatives

LEE-CHIANG LO,* JEAN-YIN CHEN, CHUN-TZU YANG, AND DER-SHANG GU
Department of Chemistry, National Taiwan University, Taipei, Taiwan

Dedicated to Professor Koji Nakanishi on the occasion of his 75th birthday

ABSTRACT The absolute configuration of \(\beta\)-hydroxy-\(\alpha\)-amino acids was studied by CD exciton chirality method using 7-diethylaminocoumarin-3-carboxylate as a red-shifted chromophore. The CD spectra of bischromophoric derivatives of (S)-serine and (2S,3R)-threonine methyl esters (2 and 7) were compared with those of acyclic \(\text{vic}\) aminoalcohols and diols (3–6 and 8–9). This study indicates that the polar carboxylate group of \(\beta\)-hydroxy-\(\alpha\)-amino acids makes them a unique subclass of \(\text{vic}\) aminoalcohols. By combining the data of CD and NMR coupling constants, we are able to correlate their preferred conformer B and positive CD to the corresponding absolute configuration.

KEY WORDS: 7-diethylaminocoumarin-3-carboxylate; red-shifted chromophore; acyclic aminoalcohol; bischromophoric; fluorescent; stereochemistry

\(\beta\)-Hydroxy-\(\alpha\)-amino acids belong to an important class of compounds. For example, L-serine and L-threonine, together with other L-amino acids, are the basic building blocks of proteins, which exhibit enormous diversity of functions in biological systems. \(\beta\)-Hydroxy-\(\alpha\)-amino acids other than serine and threonine have also been found as constituents of cyclic peptides and other natural products possessing a wide range of biological properties, including antibiotics and immunosuppressants.\(^1\) Therefore, they have become the targets of many synthetic efforts. A number of methods based on chemical and enzymatic approaches have been reported.\(^2 \text{-} 7\) However, the establishment of the absolute configuration of these compounds still relies mostly on comparison of their optical rotations with those of authentic samples. Therefore, it is necessary to develop a spectroscopic method for the determination of the absolute configuration of this class of compounds.

The CD exciton chirality method is a nonempirical means and has been widely used for determining the absolute configuration of many natural products.\(^8 \text{-} 9\) The electric transition moments of two chromophores interact through space to give an exciton-coupled CD spectrum. The sign and intensity of the couplets depend on the handedness of the two chromophores and the distance between them. The assignment of the stereochemistry is thus very straightforward for rigid systems. However, the acyclic systems, which are flexible and may exist in several conformers, present a more challenging task. Over the years, several methods have been developed for different situations, including acyclic polyols,\(^10 \text{-} 14\) aminopolyols,\(^15 \text{-} 16\) and sphingolipids.\(^17 \text{-} 18\) In our continuing efforts to explore new red-shifted chromophores for CD exciton chirality application, we previously introduced the use of 7-diethylaminocoumarin-3-carboxylate (1).\(^19\) In this report, we further extend the use of this red-shifted chromophore to \(\beta\)-hydroxy-\(\alpha\)-amino acids, an acyclic \(\text{vic}\)-aminoalcohol system, using serine and threonine derivatives (2 and 7) as model compounds.

EXPERIMENTAL

General Methods

All reagents and starting materials were obtained from commercial suppliers (Acros; Aldrich, Milwaukee, WI; and Merck, Whitehouse Station, NJ) and were used without further purification. \(^1\)H- and \(^13\)C-NMR were recorded using a Bruker Avance 400 spectrometer. \(^1\)H-NMR spectra in CDCl\(_3\) were referenced to residual CHCl\(_3\) at 7.24 ppm and \(^13\)C-NMR spectra to the central peak of CDCl\(_3\) at 77.0 ppm. High-resolution mass spectra were recorded on a JEOL-102A mass spectrometer. Analytical TLC (silica gel, 60F-54, Merck) and spots were visualized under UV light and/or phosphomolybdic acid-ethanol. Column chromatography was performed with Kieselgel 60 (70–230 mesh) silica gel (Merck). All samples were subjected to HPLC purification prior to UV/CD measurements. Spectrophotometric grade of CH\(_2\)Cl\(_2\) and a Jasco J-720 spectropolarimeter were used for obtaining CD spectra. Melting points are reported without correction. The crystallographic data were collected on a NONIUS CAD4 diffractometer using graphite-
monochromated MoKα radiation. Structural analysis was made by using SHELXTL program on Silicon Graphics computer.

General Procedure for the Preparation of Bischromophoric Derivatives

To an ice-cooled solution of starting diols or aminoalcohols (1.25 mmol), DMAP (3.0 mmol) and 7-diethylaminocoumarin-3-carboxylic acid (2.62 mmol) in CH2Cl2 (5 mL) was slowly added a solution of DCC (3.0 mmol) in CH2Cl2 (3 mL). The mixture was gradually allowed to return to room temperature and stirred overnight. It was quenched by adding a few drops of 5% citric acid and stirred for another 30 min. The CH2Cl2 was removed and EtOAc was added. The DCU was first filtered off and the EtOAc filtrate was washed with 10% NaHCO3 (aq), H2O (aq), and finally with brine. The organic layer was dried over anhydrous Na2SO4. It was filtered, concentrated, and subjected to silica gel column chromatography for purification. The desired product was eluted with CHCl3/MeOH (9:1).

1. **(S)-N,O-bis(7-Diethylaminocoumarin-3-carbonyl)-serine methyl ester (2).** Yield 85%, Rf 0.50 (CHCl3/EtOAc = 1:1), mp 102–105°C; 1H-NMR (CDCl3, 400 MHz) δ 9.57 (d, J = 8.0 Hz, 1H, NH), 8.62 (s, 1H), 8.44 (s, 1H), 7.39 (d, J = 9.0 Hz, 1H), 7.36 (d, J = 9.0 Hz, 1H), 6.61-6.55 (m, 2H), 6.43 (d, J = 2.3 Hz, 1H), 6.36 (d, J = 2.3 Hz, 1H), 5.09 (dd, J = 8.0, 4.0 Hz, 1H), 4.77 (dd, J = 11.2, 3.7 Hz, 1H), 3.77 (s, 3H), 3.43-3.37 (m, 8H), 1.20-1.18 (m, 12H); 13C-NMR (CDCl3, 100 MHz): δ 169.9 (C), 163.4 (C), 162.7 (C), 162.6 (C), 162.3 (C), 158.4 (C), 158.0 (C), 157.7 (C), 153.0 (C), 152.7 (C), 149.4 (CH), 148.3 (CH), 131.1 (CH), 131.0 (CH), 128.5 (CH), 126.5 (CH), 110.1 (C), 109.9 (C), 109.4 (C), 108.3 (C), 108.3 (C), 108.7 (C), 96.6 (CH), 96.5 (CH), 64.1(CH3), 52.8 (CH2), 51.8 (CH3), 45.0 (CH3), 12.3 (CH3); FAB-HRMS calcd for C32H38O9N2 (M + H+) 606.2451, found 606.2451.

2. **(2S,3S)-1,2-bis(7-Diethylaminocoumarin-3-carbonyl)-2-amino-1-phenylpropane-1,3-diol (6).** Yield 56%, Rf 0.38 (CHCl3/EtOAc = 1:1), mp 127–129°C; 1H-NMR (CDCl3, 400 MHz) δ 9.49 (d, J = 7.9 Hz, 1H, NH), 8.55 (s, 1H), 8.43 (s, 1H), 7.46 (d, J = 7.4 Hz, 2H), 7.35-7.17 (m, 5H), 6.59-6.56 (m, 2H), 6.55-6.40 (m, 2H), 5.16 (s, 1H, OH), 4.63 (dd, J = 11.1, 4.7 Hz, 1H), 4.57 (m, 1H), 4.52 (d, J = 3.4 Hz, 1H), 4.40 (dd, J = 11.1, 3.6 Hz, 1H), 3.43-3.37 (m, 8H), 1.22-1.16 (m, 12H); 13C-NMR (CDCl3, 100 MHz) δ 164.1 (C), 163.7 (C), 162.3 (C), 158.6 (C), 158.5 (C), 157.6 (C), 153.1 (C), 152.5 (C), 150.0 (CH), 148.0 (CH), 141.5 (C), 131.3 (CH), 131.0 (CH), 128.2 (CH), 127.4 (CH), 126.1 (CH), 109.9 (C), 108.9 (CH), 109.7 (CH), 108.2 (C), 107.8 (C), 96.5 (CH), 96.5 (CH), 73.4 (CH), 65.5 (CH2), 54.5 (CH), 45.0 (CH3), 12.4 (CH3), 12.4 (CH3); FAB-HRMS calcd for C37H40N3O8 (M + H+) 638.2867, found 638.2877.

3. **(2S,3R)-N,O-bis(7-Diethylaminocoumarin-3-carbonyl)-threonine methyl ester (7).** Yield 94%, Rf 0.69 (CHCl3/EtOAc = 1:1), mp 193–197°C; 1H-NMR (CDCl3, 400 MHz) δ 9.62 (d, J = 9.2 Hz, 1H, NH), 8.67 (s, 1H), 8.61 (s, 1H), 7.52 (d, J = 9.2 Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 6.64-6.59 (m, 2H), 6.49 (d, J = 2.4 Hz, 1H), 6.39 (d, J = 2.4 Hz, 1H), 5.72 (m, 1H), 4.98 (dd, J = 9.2, 2.0 Hz, 1H), 3.71 (s, 3H), 3.47-3.39 (m, 8H), 1.41 (d, J = 6.8 Hz, 3H), 1.24-1.18 (m, 12H); 13C-NMR (CDCl3, 100 MHz): δ 170.3 (C), 163.7 (C), 162.6 (C), 161.5 (C), 158.4 (C), 158.2 (C), 157.9 (C), 153.1 (C), 152.8 (C), 149.6 (CH), 148.5 (CH), 131.9 (CH), 131.3 (CH), 110.0 (CH), 109.6 (C), 109.5 (C), 108.3 (C), 107.9 (C), 107.6 (C), 96.6 (CH), 96.5 (CH), 70.5 (CH), 56.0 (CH), 52.7 (CH3), 45.1 (CH3), 17.5 (CH3), 12.4 (CH3); FAB-HRMS calcd for C39H38O9N2 (M + H+) 620.2608, found 620.2608.
(2R,3R)-Diethyl tartrate-2,3-bis(7-diethylaminocoumarin-3-carboxylate) (8). Yield 80%, Rf 0.50 (CHCl3/EtOAc = 1:1), mp 200–203°C; 1H-NMR (400 MHz, CDCl3) δ 8.54 (s, 2 H), 7.38 (d, J = 9.2 Hz, 2 H), 6.57 (dd, J = 8.8, 2.0 Hz, 2 H), 6.38 (d, J = 2.0 Hz, 2 H), 5.91 (s, 2 H), 4.26-4.16 (m, 4 H), 3.44-3.38 (m, 8 H), 2.07-2.01 (m, 12 H); 13C-NMR (CDCl3, 100 MHz) δ 153.2 (C), 152.8 (C), 149.1 (CH), 131.4 (CH), 109.4 (CH), 108.1 (CH), 107.6 (C), 105.0 (C), 12.3 (CH3); FAB-HRMS calcld for C32H37N2O8 (M + H+) 577.2550, found 577.2535.

RESULTS AND DISCUSSION

Red-shifted chromophores provide the advantage of high sensitivity (λ > 30,000) and give CD couples in the region where no intrinsic chromophores in the parent molecules will interfere. This property also offers more freedom in choosing solvents for CD measurements. Red-shifted chromophore 1 is fluorescent (λex 406 nm, λem 462 nm in acetonitrile) and gives extremely strong CD couples on rigid systems such as 1(R,2R)-1,2-diaminocyclohexane (A = −203) and 1(R,2R)-1,2-cyclohexanediol (A = −161). Since β-hydroxy-α-amino acids belong to a subclass of vic-aminoalcohols, we prepare two series of bischromophoric derivatives (2–6 and 7–9) from the corresponding chiral aminoalcohols and diols for this study (Fig. 1). (S)-Serine and (2S,3R)-threonine represent the simplest form of β-hydroxy-α-amino acids. The first line starts with the methyl ester of (S)-serine (2), a terminal vic-aminoalcohol. The second line starts with the methyl ester of (2S,3R)-threonine (7), which carries an extra methyl substituent on the carbonyl center (Cα) and is an internal vic-aminoalcohol. The bischromophoric derivatization of these aminoalcohols and diols could easily be achieved by a single coupling reaction using DCC/DMAP method in high yields.

The UV/vis and CD spectra of (S)-2 and (2S,3R)-7 are shown in Figure 2. The UV/vis spectra of these two compounds measured in CH3Cl2 show λmax around 419–421 nm, which is typical for the derivatives of red-shifted chromophore 1. Since all the bischromophoric derivatives are freely soluble in CH3Cl2, all the following UV/vis and CD measurements were carried out in this solvent. The CD of (S)-2 exhibits an exciton couplet with a positive first Cotton effect (CE) at 432 nm (Δε +31.4) and a negative second CE at 397 nm (Δε −17.6), leading to an A value of +49. This positive handedness of the two chromophores could be explained from their conformational analysis. There are three staggered conformers for (S)-2, as shown in Figure 3 (R1 = CO2Me, R2 = H, X = NH). The sign of the CD exciton couplets depends on the relative positions of the two chromophores. The two chromophores are in gauche

*The data have been deposited with the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (http://www.ccdc.cam.ac.uk). Refcode for compound 7: 154948 and for compound 8: 154949.
positions for conformers A and B, and in anti positions for conformer C. Since the dihedral angle between the two chromophores in conformer C is close to 180°, it is not expected to have a significant CD. Conformer A will give a negative CD and conformer B will lead to a positive CD. 1H-NMR study provides useful information regarding which conformer will be predominant. The coupling constants between one H_a and two H_b protons were measured for (S)-2. The corresponding coupling constants were 3.7 and 4.0 Hz in CDCl_3 (Table 1). These data reveal that the H_a proton is gauche to both H_b protons, as shown in the conformer B, which is predominant and responsible for the observed positive CD.

In order to compare (S)-2 with other terminal vic-aminoalcohols, we also prepared bischromophoric derivatives 3–6, each carrying, respectively, a Me, Et, Bn, and hydroxybenzyl group in place of the carboxylate. The UV/vis, CD, and 1H-NMR coupling constants of these derivatives are shown in Table 1 and their conformational structures in Figure 3. Their UV/vis spectra have λ_max around 419–424 nm in CH_2Cl_2, which are the same as that of (S)-2. This λ_max is slightly red-shifted as compared with the spectra taken in polar solvents such as acetonitrile and acetone (λ_max 413–418 nm). The vicinal coupling constants of H_a and H_b protons for compounds 3–6 fall in the range of 3.6–4.9 Hz (Table 1), which are similar to those of (S)-2. This evidence indicates that compounds 2–6 all favor conformer B. The only difference is to what extent the conformer B is predominant over the other two conformers. The relative abundance of the conformers could be deduced from Karpus’ equation, the smaller the coupling constants are, the more abundant the conformer B is populated. The conformer B is more abundant in compounds 2 (R^1 = CO_2Me) and 6 (R^1 = CH(OH)Ph) than in compounds 3 (R^1 = Me), 4 (R^1 = Et), and 5 (R^1 = Bn). It implies that the polarity of the substituent plays a dominating role in the distribution of conformers. Here, a polar substituent, such as carboxylate and hydroxybenzyl group, at C_a favors the conformer B. This observation of conformational preference is different from what Harada et al. reported on terminal vic-diols using p-substituted benzoates as the chromophore, where the conformer A is the most populated conformation regardless of the polarity of the substituents. The intensity of the A values (Table 1) for com-

![Figure 2](https://example.com/fig2.png)

Fig. 2. CD and UV/vis spectra of bischromophoric derivatives of serine 2 (—) and threonine 7 (---) in CH_2Cl_2.

![Figure 3](https://example.com/fig3.png)

Fig. 3. Three staggered conformers (A–C) of the bischromophoric derivatives 2–9.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^1</th>
<th>R^2</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)-2</td>
<td>CO_2Me</td>
<td>H</td>
<td>NH</td>
</tr>
<tr>
<td>(R)-3</td>
<td>Me</td>
<td>H</td>
<td>NH</td>
</tr>
<tr>
<td>(R)-4</td>
<td>Et</td>
<td>H</td>
<td>NH</td>
</tr>
<tr>
<td>(R)-5</td>
<td>Bn</td>
<td>H</td>
<td>NH</td>
</tr>
<tr>
<td>(2S,3S)-6</td>
<td>CH(OH)Ph</td>
<td>H</td>
<td>NH</td>
</tr>
<tr>
<td>(2S,3S)-7</td>
<td>CO_2Me</td>
<td>Me</td>
<td>NH</td>
</tr>
<tr>
<td>(2S,3S)-8</td>
<td>CO_2Et</td>
<td>CO_2Et</td>
<td>O</td>
</tr>
<tr>
<td>(2R,3R)-9</td>
<td>Me</td>
<td>Me</td>
<td>O</td>
</tr>
</tbody>
</table>
pounds 2–6 obtained from CD measurements are also parallel to this NMR conformational analysis (2, 6) > (3, 4, and 5). Therefore, in the first series of the β-hydroxy-α-amino acids a positive CD is linked to the (S)-configuration of serine derivative.

Threonine derivative (7) is an extension to serine (2). It has two stereocenters with a *threo* relative stereochemistry, as shown in Figure 3 (R1 = CO2Me, R2 = Me, X = NH). The *vicinal* coupling constant of the Ha and Hb protons is 2.0 Hz in (2S,3R)-7 (Table 1). The CD of (2S,3R)-7 gives a positive first CE at 432 nm (Δε +54.4) and a negative second CE at 396 nm (Δε -24.1), an A value of +79. Therefore, (2S,3R)-7 preferably adopts conformer B. Besides, the population of conformer B is higher in (2S,3R)-7 than in (S)-2, which could be deduced from their A values (+79 vs. +49) (Fig. 2). This could be attributed to the steric effect of the extra methyl group at Cb of (2S,3R)-7. The crystal structure of (2S,3R)-7 is shown in Figure 4. It is consistent with the conformer B in the crystalline state and the two chromophores have a dihedral angle of +75.0°.

The second series of β-hydroxy-α-amino acids can be compared with internal *vic*-diols (2S,3S)-8 and (2R,3R)-9 (Fig. 3). Compound 8 has two polar carboxylate substituents (R1 = R2 = CO2Et, X = O), whereas compound 9 has two nonpolar methyl substituents (R1 = R2 = Me, X = O). The *vicinal* coupling constant of the Ha and Hb protons in (2R,3R)-8 is 3.2 Hz, which is obtained from the 13C satellite bands.23 It therefore excludes the conformer A. Since conformer C gives no significant CD, the intense CD of (2R,3R)-8 (A = -104) is mostly contributed from conformer B. This result is consistent with that of (2S,3R)-7, both in favor of conformer B. The crystal structure of (2R,3R)-8 is shown in Figure 5. It also adopts the conformer B. The two chromophores have a dihedral angle of −50.6° in the crystalline state.

When the two polar carboxylate substituents of compound 8 were replaced by nonpolar methyl groups as in

Table 1. UV, CD, and NMR coupling constants of bischromophoric derivatives 2–9

<table>
<thead>
<tr>
<th>Compound</th>
<th>UV/vis (CH2Cl2): λmax (ɛ)</th>
<th>CD (CH2Cl2): λext (Δε)</th>
<th>A value</th>
<th>Coupling constanta J_{HAB} (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)-2</td>
<td>422 (82,000)</td>
<td>432 (-31.4), 397 (-17.6)</td>
<td>+49</td>
<td>3.7, 4.0</td>
</tr>
<tr>
<td>(S)-3</td>
<td>420 (80,000)</td>
<td>428 (-3.9), 396 (+4.0)</td>
<td>-10</td>
<td>4.6, 4.9</td>
</tr>
<tr>
<td>(R)-4</td>
<td>419 (75,000)</td>
<td>428 (+8.6), 395 (-5.3)</td>
<td>+14</td>
<td>4.0, 4.2</td>
</tr>
<tr>
<td>(S)-5</td>
<td>421 (71,000)</td>
<td>428 (-21.7), 395 (+6.7)</td>
<td>-30</td>
<td>3.9, 4.6</td>
</tr>
<tr>
<td>(2S,3S)-6</td>
<td>424 (84,000)</td>
<td>431 (+44.4), 398 (-15.5)</td>
<td>+60</td>
<td>3.6, 4.7</td>
</tr>
<tr>
<td>(2S,3R)-7</td>
<td>419 (88,000)</td>
<td>432 (+54.4), 396 (-24.1)</td>
<td>+79</td>
<td>2.0</td>
</tr>
<tr>
<td>(2R,3R)-8</td>
<td>422 (88,000)</td>
<td>435 (-70.9), 401 (+33.5)</td>
<td>-104</td>
<td>3.2b</td>
</tr>
<tr>
<td>(2R,3R)-9</td>
<td>420 (82,000)</td>
<td>432 (-31.9), 395 (+21.1)</td>
<td>-53</td>
<td>—</td>
</tr>
</tbody>
</table>

*aSpectra were taken in CDCl3.

bObtained from the 13C satellite bands.
(2R,3R)-9, the preferred conformer changed. The CD of (2R,3R)-9 exhibits a negative first CE at 432 nm (δε = -31.9) and a positive second CE at 395 nm (Δε +21.1), an A value of -53. This negative CD suggests that conformer A is dominant in (2R,3R)-9. This conformational preference is different from that of (2S,3R)-7 and (2S,3S)-8. Although we were unable to measure the vicinal coupling constant for (2R,3R)-9, the preference of conformer A for nonpolar substituents in internal vic-diol systems is in agreement with literature results.13 This result further supports the point we obtained with the case of (S)-2; the polar carboxylate group of the β-hydroxy-α-amino acids will favor conformer B.

CONCLUSION

A CD exciton chirality method using a red-shifted 7-diethylaminocoumarin-3-carboxylate (1) chromophore was studied on the β-hydroxy-α-amino acids. Due to its red-shifted property, we were able to use CH2Cl2 as the solvent for CD and UV/vis measurements in this study. The polar carboxylate group in this class of compounds plays an important role in determining the population of each conformer. Data from NMR coupling constants reveal the preferred conformation with the resultant positive CD in (S)-2 and (2S,3R)-7. We were able to determine the absolute configuration of these β-hydroxy-α-amino acids. We are currently investigating the effect on the CD of the compounds bearing aromatic substituents at C4.

ACKNOWLEDGMENT

We thank Mr. Gene-Hsiang Lee and Professor Yu Wang for solving the crystal structures of (2S,3R)-7 and (2R,3R)-8.

LITERATURE CITED