Crucial Role of Estrogen Receptor-α Interaction with Transcription Coregulators in Follicle-Stimulating Hormone and Transforming Growth Factor β1 Up-Regulation of Steroidogenesis in Rat Ovarian Granulosa Cells

Yun-Ju Chen, Ming-Ting Lee, Hsiao-Chun Yao, Pei-Wen Hsiao, Fergn-Chun Ke, and Jiuan-Juan Hwang

Institute of Physiology, School of Medicine (Y.-J.C., H.-C.Y., J.-J.H.), National Yang-Ming University, Taipei 112, Taiwan; Institutes of Biological Chemistry (M.-T.L.) and BioAgricultural Sciences (P.-W.H.), Academia Sinica, Taipei 115, Taiwan; and Institute of Molecular and Cellular Biology (F.-C.K.), School of Life Science, National Taiwan University, Taipei 106, Taiwan

This study was to explore estrogen receptor (ER) involvement in FSH and TGFβ1-stimulated steroidogenesis in rat ovarian granulosa cells. We first determined the specific involvement of ERα and ERβ in the process, and then investigated the molecular interaction of ERα and transcription coregulators in FSH and TGFβ1 up-regulation of steroidogenic gene expression. Primary culture of ovarian granulosa cells from antral follicles of gonadotropin-primed immature rats was used. Interestingly, a selective ERα antagonist methyl-piperidino-pyrazole (MPP) [like ER antagonist ICI-182,780 (ICI)] decreased FSH ± TGFβ1-stimulated progesterone production, whereas an androgen receptor antagonist hydroxyflutamide and particularly a selective ERβ antagonist 4-[2-Phenyl-5,7-bis(trifluoromethyl) pyrazolo [1,5-a] pyrimidin-3-yl]phenol had no significant effect. Consistent with this, a selective ERβ agonist diarylpropionitrile (unlike 17β-estradiol) also had no effect on FSH ± TGFβ1-stimulated progesterone production. Furthermore, a selective ERα agonist 4,4′,4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (like 17β-estradiol) enhanced FSH-stimulated progesterone production, and this was abolished by pretreatment with MPP. Immunoblotting and chromatin immunoprecipitation analyses indicate that MPP/ICI suppression of FSH ± TGFβ1 action is partly attributed to the reduced ERα-mediated expression of Hsd3b and Cyp11a1 genes, but not steroidogenic acute regulatory protein. Furthermore, FSH ± TGFβ1 increased ERα association with histone acetylases (CBP and SRC-1) and coactivator of peroxisome proliferator-activated receptor γ (PGC-1α), and MPP/ICI dramatically reduced these interactions. In addition, FSH ± TGFβ1 increased CBP, SRC-1, and PGC-1α binding to Hsd3b and Cyp11a1 genes. Together, we demonstrate for the first time that ERα interaction with transcription coregulators, histone acetylases (CBP/SRC-1), and PGC-1α is crucial to FSH and TGFβ1 up-regulated expression of Hsd3b and Cyp11a1, and, thus, progesterone production in rat ovarian granulosa cells. (Endocrinology 149: 4658–4668, 2008)
terstitial glandular cell development (12–14). Although ERα and ERβ display certain functional redundancy, they are different in the ligand activation and transcriptional properties (12, 13). ER regulation of target gene expression is mediated through direct binding to estrogen response element (ERE), and/or indirect interaction with coregulators and other transcription factors [e.g. activator protein-1 (AP-1)] resulting in recruitment of RNA polymerase II-containing transcription initiation complex that enhances target gene transcription with a coordinated and timely cycling manner (15–19). Presently, a few interacting partners of ERα have been demonstrated. ERα could recruit histone acetylases (CBP, SRC-1, and RAC-3) that facilitate chromatin remodeling and, therefore, enhance transcription of ER-regulated genes (20, 21). Interestingly, the coactivator of peroxisome proliferator-activated receptor γ (PGC-1α) also serves as a transcription coactivator of ERα in both a ligand-independent and ligand-dependent manner (22). In addition, our most recent study demonstrates that FSH increased phosphorylation of fork-head box protein (Fox) O1 and FoxO3a in rat ovarian granulosa cells (9). It has been reported that phosphorylation of FoxOs leads to their nuclear exit and, thus, the release of their suppression of target gene transcription (23, 24). In addition, FoxO1 interaction with ERα augmented ligand-dependent ERα transactivation (25). The transcriptional regulation activity of ERα could be modulated by coregulators in a cell context-specific manner (16, 26, 27).

ERα and ERβ play differential roles in follicle growth and differentiation during rodent ovarian cycle (12–14). During luteinization, ERβ is down-regulated (28, 29) in coincidence with up-regulation of ERα (30, 31). This inspires us to explore the role of ERα in FSH and TGFβ1-promoted differentiation of rat ovarian granulosa cells. There were two specific aims. The first was to determine the specific role of ERα and ERβ in FSH and TGFβ1-stimulated progesterone production and the associated key steroidogenic proteins. The second aim was to investigate the molecular interaction of ERα and transcription coregulators in FSH and TGFβ1 up-regulation of steroidogenic gene expression.

Materials and Methods

Materials

Ovine FSH (oFSH-19-SIAFP) and equine chorionic gonadotropin were purchased from the National Institute of Diabetes and Digestive and Kidney Diseases’s National Hormone & Peptide Program and Dr. A. F. Parlow (Harbor-UCLA Medical Center, Torrance, CA). Recombinant human TGFβ1 was obtained from R&D System, Inc. (Minneapolis, MN). Penicillin and streptomycin were from GIBCO Invitrogen Corp. (Carlsbad, CA). ICI182,780 (ICI), diarylpropionitrile (DPN), 4,2-Phe nyl-5,5'-bis(trifluoromethyl) pyrazolo [1,5-a] pyrimidin-3-yl] phenol (PHTPP), and 4,4',4'-([4-Propyl]-[1H]-pyrazole-1,3,5-triyl]trisphenol (PPT) were purchased from Toxis (Bristol, UK). Hydroxyflutamide (HF) was kindly provided by Schering-Plough Pharmaceutical (Kenilworth, NJ). AntiERα IgG 450bcx enzyme were a generous gift from Dr. Bon-Chu Chung (Academia Sinica, Taipei, Taiwan). Antibodies against ERα, CBP, PGC-1α, RAC-3, β-catenin, phosphorylated Smad2 and phosphorylated Smad3, and Protein-A/G plus agarose bead were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Antibodies against SRC-1, c-Jun, FoxO1, and FoxO3a were from Cell Signaling Technology, Inc. (Beverly, MA). Antibody against phosphorylated CAMP response element-binding protein (CREB) was from Upstate Biotechnology Inc. (Lake Placid, NY). All other chemicals used were purchased from Sigma Chemical Co. (St. Louis, MO) unless otherwise stated.

Animals

Immature Sprague Dawley rats (25–27 d) were obtained from the Animal Center at National Yang-Ming University (Taipei, Taiwan). Rats were maintained under controlled temperature (20–23 °C) and light conditions (14-h light, 10-h darkness). Food (LabDiet; PMI Feeds, St. Louis, MO) and water were available ad libitum. This study was conducted in accordance with the U.S. National Research Council’s Guide for the Care and Use of Laboratory Animals and the institutional guidelines.

Cell culture and treatment

Isolation and culture of ovarian granulosa cells from antral follicles of equine chorionic gonadotropin-treated immature rats were performed as previously described (7–9). In brief, granulosa cells (5 × 10⁵) were inoculated into 24-well plates coated with matrigel (derived from Engelbreth-Holm-Swarm sarcoma tumors; Sigma) in DMEM/F12 medium containing 2 μg/ml bovine insulin, 0.1% fatty acid-free BSA, 100 U/ml penicillin, and 100 μg/ml streptomycin, and allowed to attach for 24 h at 37 °C, 5% CO₂, 95% air. Cultured cells were then incubated in DMEM/F12 medium containing 0.1% lactalbumin hydrolysate, 100 U/ml penicillin, and 100 μg/ml streptomycin for 24 h before the beginning of treatment. Cells were pretreated for 1 h with ethanol vehicle or various doses of ER antagonist ICI (32), ERα antagonist methyl-piperidino-pyrazole (MPP) (33), androgen receptor (AR) antagonist HF (34), ERβ antagonist PHTPP (35), or ERβ agonist DPN (28), and then treated with FSH (10 ng/ml) and/or TGFβ1 (5 ng/ml) for an additional 48 h. To determine the involvement of ERα in estradiol augmentation of FSH-stimulated progesterone production, granulosa cells were pretreated for 1 h with ethanol vehicle or ERα antagonist MPP, and then treated with FSH and/or a selective ERα agonist PPT for an additional 48 h. All doses of drugs used throughout the study had no obvious cytotoxic effect. At the end of incubation, conditioned media were collected and assayed by immunoblotting, and stored at −70 °C until assayed for progesterone content by ELISA. Cell number was determined using the crystal violet assay as previously described (36).

ELISA for progesterone

Progesterone level in conditioned media was measured by ELISA as previously described (7–9). Antiseras against progesterone (37) were kindly provided by Dr. O. David Sherwood (University of Illinois, Urbana, IL).

Immunoblotting

Granulosa cells (6 × 10⁵) were cultured in Matrigel-coated 60-mm culture dishes, pretreated with ethanol vehicle, or various doses of MPP or ICI for 1 h, and then treated with FSH (10 ng/ml) and/or TGFβ1 (5 ng/ml) for an additional 48 h to determine their effects on the protein levels of STAR (38), P450scc (39), and 3β-HSD enzymes (40). Cell lysates were prepared, and immunoblotting was performed as previously described (7–9). Relative quantification of chemiluminescent signals on x-ray film was analyzed using a two-dimensional laser scanning densitometer (Molecular Dynamics, Sunnyvale, CA).

Coimmunoprecipitation

Granulosa cells (15 × 10⁵) were cultured in Matrigel-coated 100-mm culture dishes, pretreated with ethanol vehicle, MPP, or ICI for 1 h, and then treated with FSH (10 ng/ml) and/or TGFβ1 (5 ng/ml) for 30 min to determine their effects on the ERα interaction with transcription coregulators. Cell lysates (500 μg proteins) were preclared with 20 μl protein A/G plus agarose, incubated for 2 h at 4 °C. After centrifugation at 15,000 × g for 15 min, the supernatant was incubated with 1 μg ERα antibody for 6 h at 4 °C, followed by addition of 30 μl protein A/G plus agarose and rotated overnight at 4 °C. The immune precipitated products were separated by centrifugation, and analyzed by immunoblotting using antibodies of ERα, histone acetylases (CBP, SRC-1, and RAC-3), PGC-1α, and transcription factors (c-Jun, β-catenin, phospho-Smad2, phospho-Smad3, phospho-CREB, FoxO1, and FoxO3a).
Chromatin immunoprecipitation (ChIP) assay

Granulosa cells (~15 x 10^6) were cultured in Matrigel-coated 100-mm culture dishes, pretreated with ethanol vehicle, MPP, or ICI for 1 h, and then treated with FSH (10 ng/ml) and/or TGFβ1 (5 ng/ml) for 3 h to determine their effects on the binding of ERα, CBP, SRC-1, and PGC-1α to DNA using ChIP assay as previously described (41, 42). In brief, cells were first fixed in 1% formaldehyde in PBS (10 min, 37 C) to stop the reaction. Cells were then lysed in Nonidet P-40 lysis buffer [10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 1.3 mM MgCl₂, 0.5% Nonidet P-40] by incubating on ice for 10 min, and centrifuged at 1500 x g for 5 min. The nuclear pellet was further sonicated in lysis buffer (10 mM Tris-HCl [pH 7.5], 10 mM EDTA, 2% Triton X-100), and centrifuged at 15 000 x g for 20 min. The DNA fragment sizes were at the range of approximately 400-1000 bp. Small aliquots of the supernatants were kept and served as input to normalize PCR results. Supernatants were then precleared by protein A/G-agarose followed by centrifugation, and the supernatants were immune precipitated as described previously in the ChIP-precipitation section. Normal IgG in place of antibody of interest was used as the negative control. To remove RNAs and proteins, the immune complexes were incubated sequentially in 200 mM NaCl containing 2 μg/ml ribonuclease A for 2 h at 65 C, and then with 300 μg/ml proteinase K for an additional 2 h at 65 C. DNA was then extracted by phenol/chloroform (1:1, vol/vol), followed by isopropanol precipitation. DNA was then dissolved in TE buffer [10 mM Tris-HCl (pH 8.0), 1 mM EDTA]. PCR was performed using PerkinElmer GeneAmp PCR system 2400 (PerkinElmer Life And Analytical Sciences, Inc., Waltham, MA). For Star, the DNA was amplified for 30 cycles (denaturation: 95 C, 1 min; annealing: 64 C, 1 min; elongation: 72 C, 1 min) using antisense and sense primers (5'-CATCCAGCAAAGAGAAGGAGG-3' and 5'-CGTGAGTTT-GGCTCTTTGAGG-3') (~853 to ~358, accession no. NC005115). For Cyp11a1, the DNA was amplified for 25 cycles (denaturation: 95 C, 1 min; annealing: 45 C, 1 min; elongation: 72 C, 1 min) using antisense and sense primers (5'-ATCACAGAGATGCTGGCAGGA-3' and 5'-GCACGTTGATGAGGAAGATGG-3') (~801 to ~321, accession no. NC005107). For Hsd3b, the DNA was amplified for 25 cycles (denaturation: 95 C, 1 min; annealing: 58 C, 70 sec; elongation: 72 C, 70 sec) using antisense and sense primers (5'-ACTGCCAAATTTCTCATAG-3' and 5'-TTCTCCCAAGCTGCAACTGG-3') (~552 to ~151, accession no. L17138). All of these regions contain ERα half-site. The primer pairs used correspond to the rat nucleotide sequences (43, 44). The PCR cycle number chosen for each gene was at linearity range of amplification. PCR products were separated on 2% agarose gel and visualized by ethidium bromide staining.

Statistics

Quantitative data were analyzed by ANOVA and Duncan’s multiple range tests at a significance level of 0.05 using the general linear model of the SAS program (SAS Institute Inc., Cary, NC). In addition, the Student's t test was used to identify significant differences between the two treatment groups.

Results

Specific involvement of ERα in FSH and TGFβ1-stimulated steroidogenesis

We first determine the specific involvement of ER in FSH and TGFβ1-stimulated steroidogenesis in rat ovarian granulosa cells. ER antagonist ICI dose dependently (10^-10 to 10^-6 M) decreased FSH plus TGFβ1-induced progesterone production, whereas AR antagonist HF (10^-8 and 10^-5 M) had no effect (Fig. 1). Therefore, because both ERα and ERβ are present in granulosa cells, we further investigated their specific involvement by using selective modulators. Interestingly, a selective ERα antagonist MPP, like ICI, dose dependently decreased FSH ± TGFβ1-stimulated progesterone production, and the inhibitory effect of MPP at the dose of 5 x 10^-6 M was similar to that of ICI at 10^-6 M (Fig. 2).

Whereas a selective ERβ antagonist PHTPP had no obvious effect on FSH ± TGFβ1-stimulated progesterone production in rat granulosa cells (Fig. 3). In addition, 17β-estradiol (E2) is known to enhance FSH-induced progesterone secretion in

FIG. 1. Effect of ER and AR antagonists on FSH and TGFβ1-induced progesterone production in rat ovarian granulosa cells. Cells were pretreated with ethanol vehicle or various doses of an ER antagonist ICI-182780 and an AR antagonist HF for 1 h, and then treated with vehicle control (C), 10 ng/ml FSH, and/or 5 ng/ml TGFβ1 for an additional 48 h. Conditioned media were collected and analyzed for progesterone content by ELISA. Each bar represents the mean (±SE) progesterone production (n = 9). Different lowercase letters indicate significant differences among treatment groups in the absence of antagonists (P < 0.05). Asterisk indicates a significant difference compared with the FSH plus TGFβ1-treated group (P < 0.05).

FIG. 2. Effect of selective ERα antagonist on FSH and TGFβ1-induced progesterone production in rat ovarian granulosa cells. Cells were pretreated with ethanol vehicle, or various doses of ICI or an ERα antagonist MPP for 1 h, and then treated with FSH and/or TGFβ1 for an additional 48 h. Each bar represents the mean (±SE) progesterone production (n = 9). Different lowercase letters indicate significant differences among treatment groups in the absence of antagonists (P < 0.05). Asterisk indicates a significant difference compared with the respective control (C) without antagonists (P < 0.05).
increased StAR protein and 3β-HSD enzyme levels and had no significant effect on P450scc enzyme level, and the combined treatment with TGFβ1 further increased the levels of all three key molecules (Fig. 4). TGFβ1 alone did not affect the content of all three players (data not shown). Here, we demonstrate that MPP and ICI reduced the protein levels of FSH-increased 3β-HSD enzyme and FSH plus TGFβ1-increased 3β-HSD and P450scc, but not the StAR protein level (Fig. 4). ChIP assays further support that ERα exerts a critical role in FSH and TGFβ1-induced gene expression of Hsd3b and Cyp11a1, but not the Star. FSH significantly increased ERα binding (directly and/or indirectly) to Hsd3b gene, and FSH plus TGFβ1 further increased ERα binding to Hsd3b and Cyp11a1 genes (Fig. 5). Furthermore, MPP and ICI significantly reduced these interactions. In addition, we did not detect any significant association of ERα with Star gene in all groups (Fig. 5). These results indicate ERα crucial mediation of FSH and TGFβ1-stimulated progesterone production in rat ovarian granulosa cells is attributed at least partly through up-regulation of the expression of Hsd3b and Cyp11a1 genes.

Molecular interaction of ERα with transcription coregulators in FSH and TGFβ1 up-regulation of steroidogenic gene expression

Stimulation of target gene expression in response to ER is mediated by its direct binding to ERE and/or indirect interaction with other transcription coregulators (15). Therefore, we further explored ERα interaction with transcription coregulators in FSH and TGFβ1-stimulated expression of Hsd3b and Cyp11a1 genes in rat ovarian granulosa cells using communoprecipitation with ERα antibody. Interestingly, FSH increased ERα interaction with histone acetylates CBP and SRC-1, but not RAC-3, and TGFβ1 significantly enhanced FSH-induced ERα interaction with CBP (Fig. 6). Surprisingly, TGFβ1 in the presence of FSH increased ERα association with PGC-1α, whereas FSH alone had no effect. In addition, TGFβ1 alone had no significant effect on ERα association with CBP, SRC-1, and PGC-1α (Fig. 6). Furthermore, MPP and ICI dramatically suppressed the FSH ± TGFβ1-induced ERα interaction with CBP and SRC-1, as well as PGC-1α. Both FSH and TGFβ1 had no obvious effect on the ERα association with transcription factors c-Jun and β-catenin, and this is not affected by pretreatment with either MPP or ICI (Fig. 6). In addition, FSH and TGFβ1 had no obvious effect on the ERα association with TGFβ1 signaling transcription factors, phosphorylated Smad2 and Smad3. Our most recent work shows that FSH increased the phosphorylation of CREB and FoxOs (FoxO1 and FoxO3a) in rat granulosa cells (9). Here, we detected no clear association of ERα with phosphorylated CREB, as well as FoxO1 and FoxO3a in all groups (data not shown).

To study further the critical association of ERα and transcription regulator complex in FSH and TGFβ1 induction of steroidogenic gene expression in rat ovarian granulosa cells, ChIP assays with antibodies of CBP, SRC-1, and PGC-1α were used. Our results clearly demonstrate CBP, SRC-1, and PGC-1α binding to Hsd3b and Cyp11a1 genes, and CBP could also bind to Star gene (Fig. 7). FSH increased CBP,
Fig. 4. Effects of selective ERα antagonists on FSH and TGFβ1-regulated key players of steroidogenesis in rat ovarian granulosa cells. Cells were treated as described in Fig. 2. Cell lysates were analyzed by immunoblotting for StAR protein, P450sc and 3β-HSD enzymes with β-actin used as an internal control (C). Quantitative analysis of StAR, P450sc, and 3β-HSD in reference to β-actin was performed using two-dimensional scanning densitometry. Relative density ratios were calculated using the FSH-treated group value or control group value as one. Each bar represents the mean (± SE) relative density (n = 3). Different lowercase letters indicate significant differences among treatment groups in the absence of inhibitors (P < 0.05). Asterisk indicates a significant difference compared with the respective control without inhibitors (P < 0.05).

Discussion

Specific involvement of ERα in FSH and TGFβ1-stimulated steroidogenesis

The ovarian endocrine is very complicated and interesting. In our laboratory we are devoted to study the mechanism(s) of pituitary FSH and intraovarian TGFβ1-induced granulosa cell differentiation characterized by increased steroidogenic activity, production of both progesterone and estrogen. Our recent studies show that TGFβ1 augmentation of FSH-induced increase in progesterone production in rat granulosa cells of antral follicles is partly attributed to increased protein levels of StAR protein, and P450sc and 3β-HSD enzymes (7–9). This study further implicates for the first time that ERα is a critical mediator in FSH and TGFβ1-induced progesterone production, partly acting through modulating the expression of Hsd3b and Cyp11a1 genes, but not Star gene in rat ovarian granulosa cells, and interestingly ERβ appears not to be significantly involved in the process as evidenced by the following. A selective ERα antagonist MPP, like ER antagonist ICI, suppressed the FSH ± TGFβ1-stimulated progesterone production in rat granulosa cells, whereas AR antagonist HF as well as selective ERβ antagonist PHTPP and agonist DPN all had no significant effect (Figs. 1–3). This is partly attributed to the suppressive effects of MPP and ICI on the FSH ± TGFβ1-induced expression of Hsd3b and Cyp11a1, but not Star gene in rat ovarian granulosa cells, and interestingly ERβ appears not to be significantly involved in the process as evidenced by the following. A selective ERα antagonist MPP, like ER antagonist ICI, suppressed the FSH ± TGFβ1-stimulated progesterone production in rat granulosa cells, whereas AR antagonist HF as well as selective ERβ antagonist PHTPP and agonist DPN all had no significant effect (Figs. 1–3). This is partly attributed to the suppressive effects of MPP and ICI on the FSH ± TGFβ1-induced expression of Hsd3b and Cyp11a1, but not Star gene, as indicated by the results of immunoblotting and ChIP analyses (Figs. 4 and 5). Furthermore, a selective ERα agonist PPT (like E2) enhanced FSH-stimulated progesterone, and this was blocked by pretreatment with ERα antagonist MPP (Fig. 3B). Therefore, because FSH and TGFβ1 increased ERα binding directly and/or indirectly to Hsd3b and Cyp11a1 genes (Fig. 5), we explored the molecular mechanism of ERα mediation of FSH and TGFβ1-regulated expression of Hsd3b and Cyp11a1 in rat ovarian granulosa cells.
Molecular interaction of ERα with transcription coregulators in FSH and TGFβ1 up-regulation of steroidogenic gene expression

The molecular mechanisms of transcription regulation of steroidogenic genes Hsd3b, Cyp11a1, and Star remain largely unclear. There are regulators reported to be involved in transcription regulation of human Cyp11a1 and mouse Star genes, including CREB, CBP, and AP-1 (heterodimer of c-Jun and c-fos) (46). According to nucleotide sequence analysis, promoters of rat Hsd3b, Cyp11a1, and Star genes all lack a consensus cAMP response element site (TGACGTCA) (47, 48), and all have consensus AP-1 site (GTCGTCGA) (47, 49). In addition, all three rat gene promoters only have ERE half-site (AGGTCA) and not full palindrome ERE (50, 51). Up to date, no report has clearly documented ERα involvement in transcription regulation of Hsd3b, Cyp11a1, and Star genes. Several coregulators have been reported to activate ERα transcription activity, including histone acetylases (CBP, SRC-1, and RAC-3), and transcription factors (Smad3 and FoxO1) in cancer cells (21, 25, 52). Histone acetylases facilitate histone acetylation, leading to chromatin remodeling and transcription initiation by formation of stable RNA polymerase II complex. Moreover, the peroxisome proliferator-activated receptor (PPAR) γ PGC-1α and β-catenin have also acted as...
FIG. 6. Effect of selective ERα antagonists on FSH (F) and TGFβ1 (T)-regulated ERα interaction with transcription coregulators in rat ovarian granulosa cells. Cells were pretreated with ethanol vehicle, 5 × 10⁻⁶ M MPP or 10⁻⁶ M ICI for 1 h, and then treated with vehicle control (C), 10 ng/ml FSH, and/or 5 ng/ml TGFβ1 for an additional 30 min. Cell lysates were immunoprecipitated with ERα antibody, and the immune complexes were analyzed by immunoblotting for ERα and transcription coregulators (CBP, SRC-1, RAC-3, PGC-1α, c-Jun, β-catenin, phospho-Smad2 and Smad3). Quantitative analysis was performed in reference to ERα using two-dimensional scanning densitometry. Relative density ratios were calculated using the control group value as one. Each bar represents the mean (±SE) relative density (n = 3). Different lowercase letters indicate significant differences among treatment groups in the absence of antagonists (P < 0.05). Asterisk indicates a significant difference compared with the respective control without antagonists (P < 0.05). FT, FSH plus TGFβ1.
FIG. 7. Effect of selective ERα antagonists on FSH and TGFβ1-induced binding of histone acetylases and PGC-1α to key steroidogenic genes in rat ovarian granulosa cells. Cells were treated, and nuclear extracts were analyzed by ChIP assay as described in Fig. 5. Nuclear extracts were immunoprecipitated with antibodies for CBP (A), SRC-1 (B), and PGC-1α (C), or normal IgG as negative control (−). Ethidium bromide-stained intensity of the PCR products was determined and normalized to the input DNA. Relative density ratios were calculated using the control group value as one. Each bar represents the mean (±SE) relative density (n = 3). Different lowercase letters indicate significant differences among treatment groups in the absence of antagonists (P < 0.05). Asterisk indicates a significant difference compared with the respective control without antagonists (P < 0.05). C, Control; FT, FSH plus TGFβ1.

Chen et al. • ERα Mediates FSH + TGFβ1-Induced Steroidogenesis

Endocrinology, September 2008, 149(9):4658–4668
coactivators of ERα that enhanced SRC-1 and CBP binding to target genes and increased ERα transcription activity (53–56). In addition, ERα interaction with histone acetylases enhanced AP-1 transcription activity (19).

Our present study indicates for the first time that FSH-induced expression of Hsd3b gene in rat granulosa cells is partly through recruitment of ERα and histone acetylases (CBP/SRC-1), as indicated by results of coimmunoprecipitation (Fig. 6) and ChIP assays (Figs. 5 and 7). Moreover, this study implicates for the first time that TGFβ1 enhancement of FSH-induced expression of Hsd3b and Cyp11a1 genes in rat granulosa cells is through recruitment of ERα together with histone acetylases (CBP/SRC-1) and PGC-1α, as indicated by results of coimmunoprecipitation (Fig. 6) and ChIP assays (Figs. 5 and 7). All these FSH and TGFβ1-induced effects were suppressed by MPP and ICI (Figs. 5–7). ERα, in the presence of antagonists, may fail to establish a proper conformation for recruitment of coregulators to activate transcription. The PGC-1α involvement in stimulation of steroidogenesis is partially supported by a previous study reporting that PPARγ activator increased estradiol and progesterone production in rat granulosa cells (57). Because PGC-1α is known to play a critical role in mitochondria biogenesis (58), we think TGFβ1 may enhance FSH effect via increasing the capacity of steroidogenesis that takes place inside the mitochondria. Therefore, we suspect that PGC-1α involvement in FSH and TGFβ1-stimulated steroidogenesis may manifest the coordinated transcription program between enzymes for steroidogenesis and mitochondria biogenesis. In addition, TGFβ1 involvement in enhancing FSH-induced Hsd3b gene expression is partially supported by a recent study reporting a reduction of Hsd3b mRNA level in the ovary of gonadotropin-primed TGFβ1-null prepubertal female mice (10).

ER transcription regulation could also act indirectly through non-ERE (such as AP-1-responsive elements) (19). The promoters of Hsd3b, Cyp11a1, and Star gene all have a consensus AP-1 site (47, 50). And our results demonstrate ERα association with c-Jun in rat granulosa cells; however, this interaction was not altered by the presence of FSH and/or TGFβ1 (Fig. 6). In addition, β-catenin plays a pivotal role in the Wnt-signaling pathway and cell adherens junction formation (56). β-Catenin has also been reported to interact with many nuclear receptors, including AR, ER, glucocorticoid receptor and thyroid hormone receptor, and PPAR. In prostate cancer cells, β-catenin specifically interacted with AR, but not ERα, progesterone receptor β and glucocorticoid receptor (59). The present study demonstrates ERα association with β-catenin in rat granulosa cells; however, like c-Jun-ERα, this interaction was not altered by the presence of FSH and/or TGFβ1 (Fig. 6).

A previous study reported that FoxO1 interaction with ERα results in increased ERα transactivation activity (25). Our most recent study demonstrated that FSH increases the phosphorylation of FoxO1 and FoxO3α in rat ovarian granulosa cells (9). Phosphorylation of FoxOs is known to promote their exit from the nucleus (23, 24), and consistent with this concept, we did not detect any significant ERα interaction with the phosphorylated form or nonphosphorylated form of FoxO1 and FoxO3α in rat granulosa cells, regardless of FSH and/or TGFβ1 treatment (data not shown). This suggests that ERα may act through FoxOs independent manner in mediation of FSH and TGFβ1-stimulated steroidogenesis in rat ovarian granulosa cells. In addition, TGFβ1 has enhanced ERα-mediated transcription activity through direct physical interactions between Smad2/Smad3 and ERα, resulting in translocation into the nucleus and recruitment of transcription coregulators such as CBP, c-Jun, and β-catenin (52, 60). Our current study demonstrates that TGFβ1 and/or FSH did not significantly affect ERα association with phosphorylated Smad2 and Smad3 (Fig. 6), suggesting that FSH and TGFβ1 up-regulation of Hsd3b and Cyp11a1 expression is not attributed to ERα interaction with Smad2/3 in rat granulosa cells.

Although the promoter of rat Star gene has anERE half-site (AGGTCA) (49), we did not detect any association of ERα with Star gene in rat granulosa cells using ChIP assay (Fig. 5). And consistent with this, we also did not observe any significant effect of ERα antagonist MPP on FSH ± TGFβ1-increased StAR protein level (Fig. 4). Our study suggests that FSH and TGFβ1 up-regulation of Star gene expression in rat granulosa cells may be through an ERE-independent manner. In addition, the Star gene can be regulated by FSH-induced cAMP signaling (61, 62), yet it has no consensus sequence of cAMP response element (TGACGCTA) (48). Here, we show that FSH significantly enhanced CBP binding to Star gene in rat granulosa cells, and this was not altered by pretreatment with ER antagonists MPP and ICI (Fig. 7A), or by the presence of TGFβ1 (data not shown). Together, our previous (9) and present studies suggest that FSH up-regulates Star gene expression in rat granulosa cells through cAMP/CBP-dependent, and PKA/-/P3K-independent and ERα-independent pathway, and TGFβ1 augmentation of this FSH effect is through PKA/-/P3K-rapamycin-dependent and ERα-independent pathway. In addition, several signaling pathways have played a permissive role in regulation of STAR protein, including protein kinase C, MAPK/ERKs, calcium messenger systems (63, 64). The molecular mechanism whereby FSH and TGFβ1 regulate Star gene expression awaits further study.

In conclusion, the present study demonstrates for the first time that ERα, but not ERβ, plays a critical role in FSH and TGFβ1-induced steroidogenesis in rat ovarian granulosa cells through up-regulation of gene expression of Hsd3b and Cyp11a1, but not Star. This is partly attributed to FSH and TGFβ1-induced recruitment of ERα together with histone acetylases (CBP/SRC-1) and PGC-1α. Our work furthers the understanding of the mechanism of FSH and TGFβ1 induction of ovarian granulosa cell differentiation that is critically linked to oocyte maturation function and, thus, vital to fertility control.

Acknowledgments

We appreciate the generous gifts of antisera against progesterone, steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase enzymes, respectively, from Drs. O. David Sherwood (University of Illinois, Urbana, IL), Douglas M. Stocco (Texas Tech University Health Sciences Center, Lubbock, TX), Bon-Chu Chung (Academia Sinica, Taipei, Taiwan), and J. Ian Mason (Queen’s Medical Research Institute, Edinburgh University, Edinburgh, UK).

Received January 14, 2008. Accepted May 21, 2008.

Address all correspondence and requests for reprints to: Jiuan-Jiuan Hwang, Institute of Physiology, School of Medicine, National Yang-Ming
References

9. Rosenfeld CS, Roberts RM, Lubahn DB 2001 Estrogen receptor-α and -β activity are required for the interaction of the ovaries with the ovary and uterus. Mol Reprod Dev 59:336–346
16. Zhiwen ZW, Findlay JK, Carson RS, Herington AC, Burger HG 1988 Trans-

Endocrinology is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.