The following resources related to this article are available online at www.sciencemag.org (this information is current as of May 16, 2009):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/302/5650/1563

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/302/5650/1563/DC1

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/cgi/content/full/302/5650/1563#related-content

This article cites 25 articles, 7 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/302/5650/1563#otherarticles

This article has been cited by 60 article(s) on the ISI Web of Science.

This article has been cited by 16 articles hosted by HighWire Press; see:
http://www.sciencemag.org/cgi/content/full/302/5650/1563#otherarticles

This article appears in the following subject collections:
Cell Biology
http://www.sciencemag.org/cgi/collection/cell_biol

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
Although the important role of phosphatidylinerine (PS) in presenting apoptotic cells for phagocytosis is well established (1–10), the mechanism by which it is recognized by phagocytes to trigger the phagocytosis event remains elusive. To investigate the potential involvement of PSR in recognizing PS and in removing apoptotic cells, we characterized the C. elegans PSR homolog, psr-1, which is defined by an open reading frame F29B9.4 and encodes a 400–amino acid protein with 56% sequence identity and 72% sequence similarity to the human PSR protein (fig. S1) (11).

In an enzyme-linked immunosorbent assay (ELISA), recombinant PSR-1, produced and purified from Escherichia coli, preferentially bound PS over phosphatidylinositol (PI), phosphatidylethanolamine (PE), or phosphatidylcholine (PC) and displayed a binding preference to phospholipids similar to that of human PSR (Fig. 1A). Thus, PSR-1 appears to be a PS-specific binding protein. Human Jurkat T lymphocytes transiently transfected with worm PSR-1 bound to apoptotic Jurkat T cells or symmetric red blood cell ghosts transiently expressing worm PSR-1 (Fig. 1B). These results suggested that PSR-1 is an upstream receptor for the signaling pathway containing CED-2, CED-5, CED-10, and CED-12 proteins and plays an important role in recognizing phosphatidylserine during phagocytosis.

Cell Corpse Engagement Mediated by C. elegans Phosphatidylserine Receptor Through CED-5 and CED-12

Xiaochen Wang,* Yi-Chun Wu,† Valerie A. Fadok,*† Ming-Chia Lee,‡ Keiko Gengyo-Ando,* Li-Chun Cheng,* Duncan Ledwich,* Pei-Ken Hsu,* Jia-Yun Chen,* Bin-Kuan Chou,* Peter Henson,* Shohi Miyanishi,* Ding Xue†

During apoptosis, phosphatidylserine, which is normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and has been suggested to act as an “eat-me” signal to trigger phagocytosis. It is unclear how phagocytes recognize phosphatidylserine. Recently, a putative phosphatidylserine receptor (PSR) was identified and proposed to mediate recognition of phosphatidylserine and phagocytosis. We report that psr-1, the Caenorhabditis elegans homolog of PSR, is important for cell corpse engulfment. In vitro PSR-1 binds preferentially to phosphatidylserine or cells with exposed phosphatidylserine. In C. elegans, PSR-1 acts in the same cell corpse engulfment pathway mediated by intracellular signaling molecules CED-2 (homologous to the human Crkl protein), CED-5 (DOK180), CED-10 (Rac GTPase), and CED-12 (ELMO), possibly through direct interaction with CED-5 and CED-12. Our findings suggest that PSR-1 is an upstream receptor for the signaling pathway containing CED-2, CED-5, CED-10, and CED-12 proteins and plays an important role in recognizing phosphatidylserine during phagocytosis.

Although the important role of phosphatidylinerine (PS) in presenting apoptotic cells for phagocytosis is well established (1–10), the mechanism by which it is recognized by phagocytes to trigger the phagocytosis event remains elusive. To investigate the potential involvement of PSR in recognizing PS and in removing apoptotic cells, we characterized the C. elegans PSR homolog, psr-1, which is defined by an open reading frame F29B9.4 and encodes a 400–amino acid protein with 56% sequence identity and 72% sequence similarity to the human PSR protein (fig. S1) (11).

In an enzyme-linked immunosorbent assay (ELISA), recombinant PSR-1, produced and purified from Escherichia coli, preferentially bound PS over phosphatidylinositol (PI), phosphatidylethanolamine (PE), or phosphatidylcholine (PC) and displayed a binding preference to phospholipids similar to that of human PSR (Fig. 1A). Thus, PSR-1 appears to be a PS-specific binding protein. Human Jurkat T lymphocytes transiently transfected with worm PSR-1 bound to apoptotic Jurkat T cells or symmetric red blood cell ghosts transiently expressing worm PSR-1 (Fig. 1B). These results suggested that PSR-1 is an upstream receptor for the signaling pathway containing CED-2, CED-5, CED-10, and CED-12 proteins and plays an important role in recognizing phosphatidylserine during phagocytosis.

Fig. 1. Phosphatidylserine binding by C. elegans PSR-1. (A) Preferential binding of PS by recombinant PSR-1 and human PSR proteins in an ELISA assay. PSR-1 and human PSR proteins were expressed in E. coli and purified as described (13). Microtiter plates were coated with lipids as described (27). PSR-1 or human PSR (100 μg) was added to quadruplicate wells for each lipid and incubated overnight at 4°C. Bound protein was detected with monoclonal antibody 217G8E9; the binding of this antibody to PSR-1 was supported by equivalent absorbance results using an antibody to His, to detect the N-terminal polyhistidine tag on PSR-1 (28). Results represent the mean ± SEM of four separate experiments, with quadruplicate data points from each experiment. PI, phosphatidylinositol; PE, phosphatidylethanolamine; PC, phosphatidylcholine. (B) Human Jurkat T lymphocytes transiently transfected with PSR-1 bind to PS-expressing apoptotic cells and red blood cell ghosts. Jurkat cells were transfected with either the PSR-1 or the human PSR-expressing vector (13), then examined after 48 hours for their ability to bind to apoptotic Jurkat T cells (PS+), apoptotic PLB 985 cells (PS–) (12), symmetric red blood cell (RBC) ghosts (PS+), and normal red blood cells (PS–). Binding was quantified by light microscopy. Binding experiments were performed on cells obtained from three separate transfections. Within each experiment, binding was assessed in triplicate. Data are expressed as the mean ± SEM. Transfection efficiency was 27.5 ± 5.6%.

*Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA. †Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan 10617. ‡Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA. ¶Department of Physiology, Tokyo Women’s Medical University, School of Medicine, Tokyo, 162-8666, Japan.

†These authors contributed equally to this work. †To whom correspondence should be addressed. E-mail: ding.xue@colorado.edu, yichun@ntu.edu.tw

www.sciencemag.org SCIENCE VOL 302 28 NOVEMBER 2003 1563
ghosts, both of which have surface-exposed PS. Such transfected T cells did not bind to apoptotic PLB 985 cells or normal red blood cells (Fig. 1B), which lack surface-exposed PS (12). These observations indicate that PSR-1 can recognize and bind to PS or cells with surface-exposed PS in *C. elegans*.

We investigated the potential involvement of *psr-1* in removing cell corpses in *C. elegans* by examining a mutant strain containing a 968-base pair (bp) deletion (tm469) in the *psr-1* locus that results in the removal of most of the PSR-1 protein, except its first 14 amino acids (13). In a time-course analysis of cell corpses during development (14), in almost all embryonic stages, more cell corpses were observed in *psr-1(tm469)* embryos than in wild-type embryos (Fig. 2A). This increase in cell corpses did not appear to be a result of ectopic cell death because *psr-1(tm469)* animals contained the same number of nuclei in their anterior pharynx as did wild-type animals (15). In some specific cell lineages, cells that are programmed to die actually survived in *psr-1(tm469)* animals (16). The increase of embryonic cell corpses in the *psr-1(tm469)* mutant could be caused by a defect in cell corpse engulfment. We therefore used four-dimensional microscopy analysis to measure the duration of persistence of embryonic cell corpses in *psr-1(tm469)* animals. On average, cell corpses of *psr-1(tm469)* embryos persisted for 55% longer than those of wild-type animals (Fig. 2B). These results indicate that the cell corpse engulfment process is compromised in the *psr-1(tm469)* mutant.

As a cell surface receptor, PSR is proposed to act in engulfing cells to recognize exposed PS on apoptotic cells and mediate...
genes function in engulfing cells and as mutants, indicating that ced-2 specifically enhanced the corpse engulfment process. Methionine–labeled proteins used in binding reactions. (Fig. 3A). These interactions were also observed in pull-down assays with glutathione S-transferase (GST) fusion proteins. Because CED-5 is a large protein and was not readily expressed in vitro, we dissected it into two regions for in vitro expression: CED-5A (amino acids 1 to 1414) and CED-5B (amino acids 1415 to 1781). A portion of 35S-methionine–labeled CED-5A or CED-5B (about 5 to 10% of total was tested. Lanes 1, 3, 6, and 9: 10% of the amount of 35S-methionine–labeled (*) luciferase, CED-5A, CED-5B, or CED-12 was used in binding reactions. (Left) Autoradiograph. Interaction of GST-PSR-1-IN (P) or GST (G) with 35S-methionine–labeled (*) luciferase, CED-5A, CED-5B, or CED-12 was tested. Lanes 1, 3, 6, and 9: 10% of the amount of 35S-methionine–labeled proteins used in binding reactions. (Right) Coomassie blue staining. Roughly equal amounts of GST-PSR-1-IN and the control GST protein were used in the binding reactions. (C) A region of PSR-1 is important for binding to CED-5 and CED-12. Most labels are identical to those in Fig. 3B. Δ indicates deletion of amino acids 135 to 257 of PSR-1.

Table 1. Rescue of cell corpse engulfment defect of the psr-1 mutant by overexpression of CED-2, CED-5, CED-10, or CED-12. Transgenes or constructs were crossed or injected into psr-1(tm469) animals, as indicated (13). Transgenic embryos were subjected to heat shock (+) at 33°C for 1.5 hours or left at 20°C without heat shock treatment (−) and scored for the number of cell corpses (mean ± SD) 4 hours after treatment. Average numbers of cell corpses in 15 2-fold stage embryos were determined by Nomarski microscopy.

<table>
<thead>
<tr>
<th>Transgene</th>
<th>Heat shock</th>
<th>No. of corpses</th>
<th>Range of cell corpses</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>−</td>
<td>16.1 ± 0.4</td>
<td>9–23</td>
</tr>
<tr>
<td>None</td>
<td>+</td>
<td>16.8 ± 3.8</td>
<td>10–21</td>
</tr>
<tr>
<td>P Ced-psr-1</td>
<td>−</td>
<td>8.6 ± 1.2</td>
<td>7–11</td>
</tr>
<tr>
<td>P Ced-psr-1</td>
<td>+</td>
<td>16.7 ± 1.7</td>
<td>15–19</td>
</tr>
<tr>
<td>P hPSR</td>
<td>−</td>
<td>8.9 ± 1.6</td>
<td>7–11</td>
</tr>
<tr>
<td>P hpsr-1Δ</td>
<td>−</td>
<td>15.5 ± 1.2</td>
<td>14–19</td>
</tr>
<tr>
<td>P hpsr-1Δ</td>
<td>+</td>
<td>11.5 ± 1.5</td>
<td>9–15</td>
</tr>
<tr>
<td>P hpsr-1Δ</td>
<td>+</td>
<td>15.7 ± 0.9</td>
<td>14–18</td>
</tr>
<tr>
<td>P Ced-2</td>
<td>−</td>
<td>9.3 ± 1.7</td>
<td>6–14</td>
</tr>
<tr>
<td>P Ced-2</td>
<td>+</td>
<td>15.2 ± 1.1</td>
<td>13–18</td>
</tr>
<tr>
<td>P Ced-5</td>
<td>−</td>
<td>16.1 ± 2.4</td>
<td>12–20</td>
</tr>
<tr>
<td>P Ced-5</td>
<td>+</td>
<td>9.2 ± 1.1</td>
<td>8–11</td>
</tr>
<tr>
<td>P Ced-10</td>
<td>−</td>
<td>14.3 ± 1.8</td>
<td>12–19</td>
</tr>
<tr>
<td>P Ced-10</td>
<td>+</td>
<td>8.6 ± 1.2</td>
<td>6–10</td>
</tr>
<tr>
<td>P Ced-12</td>
<td>−</td>
<td>16.2 ± 2.8</td>
<td>14–21</td>
</tr>
<tr>
<td>P Ced-12</td>
<td>+</td>
<td>8.6 ± 1.2</td>
<td>6–10</td>
</tr>
<tr>
<td>P Ced-1</td>
<td>−</td>
<td>16.2 ± 1.9</td>
<td>13–18</td>
</tr>
<tr>
<td>P Ced-1</td>
<td>+</td>
<td>15.9 ± 1.6</td>
<td>14–19</td>
</tr>
<tr>
<td>P Ced-6</td>
<td>−</td>
<td>16.2 ± 2.5</td>
<td>15–21</td>
</tr>
<tr>
<td>P Ced-6</td>
<td>+</td>
<td>16.6 ± 2.1</td>
<td>13–19</td>
</tr>
<tr>
<td>P Ced-7</td>
<td>−</td>
<td>16.7 ± 1.7</td>
<td>13–20</td>
</tr>
<tr>
<td>P Ced-7</td>
<td>+</td>
<td>16.7 ± 1.4</td>
<td>14–19</td>
</tr>
</tbody>
</table>
input), or CED-12 (~2% of input), bound to GST-PSR-1-IN but not to the GST protein alone (Fig. 3B). Thus, PSR-1 appears to interact specifically with CED-5 and CED-12. The intracellular domain of human PSR also bound CED-5 and CED-12, albeit its binding to CED-5A was weaker (Fig. S2). These results are consistent with the observation that human PSR can partially rescue the engulfment defect of the psr-1 mutant. We investigated which region of PSR-1-IN bound CED-5 and CED-12 and found that a C-terminal deletion (amino acids 135 to 257) in PSR-1-IN greatly reduced the binding of PSR-1-IN to both CED-5 and CED-12 (Fig. 3C). Expression of a PSR-1 protein containing this deletion in the psr-1(tm469) mutant did not rescue the engulfment defect (Table 1), suggesting that the binding of PSR-1 to CED-5 and CED-12 may be important for the activity of psr-1 and that PSR-1 may act through CED-5 and CED-12 to promote cell corpse engulfment.

Phagocytosis of apoptotic cells is an integral part of cell death execution and an important event in tissue remodeling, suppression of inflammation, and regulation of immune responses (25, 26). Our observations indicate that C. elegans PSR-1, a PS-binding receptor, is important for cell corpse engulfment in vivo and likely transduces the engulfment signal through the CED-5 and CED-12 signaling pathway to promote cell corpse engulfment. However, PSR-1 appears unlikely to be the only engulfment receptor in the ced-5 and ced-12 signaling pathway, because the psr-1 mutant has a weaker engulfment defect than do any of the ced-2, ced-5, ced-10, or ced-12 mutants. Identification of other engulfment receptors that also act through the ced-5 and ced-12 signaling pathway will help to address the fundamental question of how apoptotic cells are recognized and phagocytosed during apoptosis.

References and Notes
6. S. M. van den Eijnde et al., Cytometry 29, 313 (1997).
13. Materials and methods are available as supporting material on Science Online.
15. X. C. Wang, D. Xue, unpublished results.
28. V. Fadok, unpublished results.
30. We thank M. Han, Y. Kohara, and Z. Zhou for reagents and strains; M. Valencia and V. Zapata for help with statistical analysis; and B. Wood and L. Edgar for help with four-dimensional microscopy analysis. This research was supported in part by the Searle Scholar Award and the Burroughs Wellcome Fund Career Award (D.X.), and grants from the Ministry of Educa- tion (89-B-FAO1-1-4) and National Science Council of Taiwan (Y.-C.W.); the Ministry of Education, Culture, Sports, Science and Technology of Japan (S.M.); and NIH (D.X. and V.A.F.).

Supporting Online Material www.sciencemag.org/cgi/content/full/302/5650/1563/ DC1
Materials and Methods Figs. S1 and S2
References
S 5 June 2003; accepted 8 October 2003

Fish Exploiting Vortices Decrease Muscle Activity

James C. Liao,1,10 David N. Beal,2 George V. Lauder,1 Michael S. Triantafyllou2

Fishes moving through turbulent flows or in formation are regularly exposed to vortices. Although animals living in fluid environments commonly capture energy from vortices, experimental data on the hydrodynamics and neural control of interactions between fish and vortices are lacking. We used quantitative flow visualization and electromyography to show that trout will adopt a novel mode of locomotion to slalom in between experimentally generated vortices by activating only their anterior axial muscles. Reduced muscle activity during vortex exploitation compared with the activity of fishes engaged in undulatory swimming suggests a decrease in the cost of locomotion and provides a mechanism to understand the patterns of fish distributions in schools and riverine environments.

Fish can simply swim against the current in turbulent flows or in formation. Compared with swimming in free stream (uniform) flow, there are two hydrodynamic benefits of station holding behind a cylinder. Fish can simply swim against the current in the region of reduced flow, drafting, for example, as a bicyclist would behind another bicyclist, or they can generate lift to move against the flow by altering their body kinematics to synchronize with the shed vortices. Because energy can be captured from cylinder vortices (18), trout that synchronize their body kinematics to vortices appropriately may need to use very little energy and, thus, gain a hydrodynamic advantage beyond that of drafting in the reduced velocity alone.