Efficient edge-preserving algorithm for color contrast enhancement with application to color image segmentation

Kuo-Liang Chunga,*, Wei-Jen Yangb, Wen-Ming Yanb

aDepartment of Computer Science and Information Engineering, National Taiwan University, No. 43, Section 4, Keelung Road, Taipei, 10672 Taiwan, ROC
bDepartment of Computer Science and Information Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, 10672 Taiwan, ROC

* Corresponding author. Fax: +886 2 27301081.
E-mail address: k.l.chung@mail.ntust.edu.tw (K.-L. Chung).

1 Supported by the National Science Council of ROC under Contracts NSC96-2221-E-011-102-MY3, NSC96-2221-E-011-026, and NSC96-2219-E-001-001.

ARTICLE INFO

Article history:
Received 17 July 2006
Accepted 22 February 2008
Available online 13 March 2008

Keywords:
CIE color model
Color contrast enhancement
Color edge detection
Color histogram moment
Color image segmentation
Color saturation and desaturation
Edge-preservation effect
Seed-based region growing approach

ABSTRACT

In this paper, a new and efficient edge-preserving algorithm is presented for color contrast enhancement in CIE \(L^*u^*v^*\) color space. The proposed algorithm not only can enhance the color contrast as the previous algorithm does, but also has an edge-preservation effect. In addition, the spurious edge points occurred due to the color contrast enhancement can be well reduced using the proposed algorithm. This is the first edge-preserving algorithm for color contrast enhancement in color space. Furthermore, a novel color image segmentation algorithm is presented to justify the edge-preservation benefit of the proposed color contrast enhancement algorithm. Based on some real images, experimental results demonstrate the advantages of color contrast enhancement, edge-preservation effect, and segmentation result in our proposed algorithm.

1. Introduction

The purpose of color contrast enhancement is to enhance a color image such that the enhanced color image is more colorful than the original color image from the viewpoint of human visual system \[8,21,22\]. Previously, many efficient algorithms for color contrast enhancement have been successfully developed. Based on reducing color ordering approach \[2\], Zabaescus et al. \[31\] presented a color contrast enhancement algorithm. Based on the curvelet transform approach \[4,26\], Starck et al. \[25\] presented an efficient algorithm for color contrast enhancement. Recently, a two-step approach, namely the saturation step and the desaturation step, was proposed for color contrast enhancement \[13,20\]. In Lucchese et al.’s algorithm \[13\], they considered the chromaticity diagram \[11,14\]. In Pei et al.’s algorithm \[20\], the considered color domain is the modified chromaticity diagram, i.e. the CIE \(L^*u^*v^*\) color space \[11\]. In \[20\], Pei et al. also developed some efficient methods to the restoration of Chinese paintings.

Among these previously published color contrast enhancement algorithms, although the enhanced color image has good color contrast enhancement effect, some degree of edge-loss may happen. Due to the edge-loss side effect, some further color image processing tasks, such as color image segmentation and object recognition, may be degraded. The main motivations of this research are twofold: (1) presenting a new algorithm to come to a compromise between the edge-preservation effect and the color contrast enhancement effect and (2) presenting a novel color image segmentation algorithm to justify the edge-preservation effect in some application.

In this paper, a new edge-preserving algorithm for color contrast enhancement is presented. Our proposed algorithm has both advantages of edge-preservation effect and color contrast enhancement. Our proposed algorithm consists of three steps: in the first step, a saturation operation is performed to maximize the color contrast effect. In order to speed up the first step, a new history-aid strategy is presented to determine the most possible side of the color gamut triangle in the CIE \(L^*u^*v^*\) color space. In the second step, a desaturation operation is performed to enrich the colorful degree. The above two steps are similar to the previous color contrast enhancement algorithms in \[13,20\]. In the third step, an edge-preservation operation is performed to preserve the edge information while keeping the color contrast enhancement effect as much as possible. In addition, the spurious edge points occurred due to the color contrast enhancement can be well reduced using the proposed algorithm. Some experiments are carried out to demonstrate that our proposed algorithm has a good compromise between the edge-preservation effect and the color contrast enhancement. This is the first edge-preserving algorithm for color contrast enhancement in color space. Finally, a novel color image segmentation algorithm is presented to justify the application of edge-preservation effect. In our proposed color image segmentation algorithm,
we have better segmentation results on our obtained enhanced image when compared to those on the previous obtained enhanced image without edge-preservation.

The remainder of this paper is organized as follows: in Section 2, first the notion of CIE \(\text{L}^u\text{v}' \) color space is introduced and then the previous color edge detector, which will be used in our proposed color contrast enhancement algorithm, is described. In Section 3, our proposed edge-preserving algorithm for color contrast enhancement and the relevant speedup strategy are presented. In Section 4, a novel color image segmentation algorithm is presented. In Section 5, some experimental results are carried out to demonstrate advantages of color contrast enhancement, edge-preservation effect, and segmentation result in our proposed algorithm. Finally, some conclusions are addressed in Section 6.

2. Preliminaries

Before presenting our proposed color contrast enhancement algorithm, this section introduces two backgrounds, namely the notion of CIE \(\text{L}^u\text{v}' \) color space \([11]\) and the previously published color edge detector by Trahanias and Venetanopoulos \([29]\). The two backgrounds will be used in Section 3.

2.1. The CIE \(\text{L}^u\text{v}' \) color space

Suppose the input color image is an RGB color image. First, the transformation from the RGB color space to the CIE \(\text{L}^u\text{v}' \) color space is described. The relevant transformation can be expressed by

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} =
\begin{bmatrix}
0.49000 & 0.31000 & 0.20000 \\
0.17697 & 0.81240 & 0.01063 \\
0.00000 & 0.01000 & 0.99000
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

\[(1) \]

In Eq. (1), the component \(Y \) is the \(L \) component in the CIE \(\text{L}^u\text{v}' \) color space. Therefore, the CIE \(\text{L}^u\text{v}' \) color space can be called the CIE \(\text{Y}^u\text{v}' \) color space. Based on the values of \(X \), \(Y \), and \(Z \), the two components \(u' \) and \(v' \) can be obtained by the following equation:

\[
u' = \frac{4X}{X + 15Y + 32}, \quad v' = \frac{9Y}{X + 15Y + 32}
\]

\[(2) \]

By Eqs. (1) and (2), the RGB color space can be transformed into the CIE \(\text{L}^u\text{v}' \) color space.

Considering only the two components \(u' \) and \(v' \), Fig. 1 depicts the so-called spectral locus of the \(u'v' \) chromatic diagram and the spectral locus is depicted by the exterior curve. Within the spectral locus, the triangle area denotes the color space which can be displayed by the CRT monitor. This triangle area is commonly called the color gamut triangle. The three corners of the color gamut triangle are denoted by the three points \(R \), \(G \), and \(B \) which are corresponding to \((u'_R, v'_R) = (0.4507, 0.5229), (u'_G, v'_G) = (0.1250, 0.5625), \) and \((u'_B, v'_B) = (0.1754, 0.1579)\). The interior point \(W = (u'_w, v'_w) = (0.1978, 0.4683) \) is defined as the white point \([11]\). Since the colors lain around the white point \(W \) are regarded as achromatic colors, it is infeasible to enhance these colors which are very near to the point \(W \).

2.2. Color edge detector

In this subsection, the color edge detector by Trahanias and Venetanopoulos \([29]\) is described and it will be used in our proposed edge-preserving algorithm for color contrast enhancement although some other color edge detectors \([23,28,32]\) can also be considered.

Suppose the window mask used in the color edge detector is of size \(w \times w \) and the \(w \times w \) color pixels covered by the window mask are denoted by the set \(P = (P_1, P_2, \ldots, P_w) \). Usually, \(w \) is selected to be 3 or 5. The color contrast or difference expressed in the CIE \(\text{L}^u\text{v}' \) color space is more fruitful than that in the RGB color space \([11]\). Thus, instead of measuring the color difference in RGB color space, we estimate the color difference in the CIE \(\text{L}^u\text{v}' \) color space. The three color components of each color pixel are denoted by \(P_i = (u'_i, v'_i, Y_i) \).

Based on the vector order statistic and the R-ordering concept \([3]\), the color edge detector \([29]\) consists of the following three steps:

Step 1: Sum up the color distances between each color pixel \(P_i \) and the other color pixels covered by the window mask. For color pixel \(P_j \), \(1 \leq j \leq w^2 \), the resulting distance is given by \(d_i = \sum_{j=1}^{w^2} ||P_i - P_j||, i = 1, 2, \ldots, w^2 \), where \(|| \cdot || \) represents an appropriate vector norm.

Step 2: Sort these \(w^2 \) distances \(d_1, d_2, \ldots, d_{w^2} \). Suppose these sorted \(w^2 \) ascending distances are \(d_{(1)}, d_{(2)}, \ldots, d_{(w^2)} \) for \(1 \leq i(1), i(2), \ldots, i(w^2) \leq w^2 \). Among these \(w^2 \) indices, \(P_{(i(1))} \) is the color pixel with the minimal distance \(d_{(1)} \); \(P_{(i(w^2))} \) sometimes can be viewed as the outlier pixel in the \(w^2 \) color pixels.

Step 3: Based on the robustness consideration, compute the minimum vector dispersion (MVD) which is given by

\[
\text{MVD} = \min_j \left\{ \left(\sum_{m=1}^{n} \frac{||P_{(i(j-k))} - P_{(i(j+k))}||}{n} \right) \right\}, \quad j = 1, 2, \ldots, k; \quad k, n < w^2.
\]

In \([29]\), \(k \) and \(n \) are selected to be 3 or 4 empirically. When the value of MVD is greater than the specified threshold, the central pixel of the concerned \(w \times w \) subimage is determined to be an edge pixel; otherwise, it is determined to be a non-edge pixel.

3. The proposed edge-preserving algorithm for color contrast enhancement

This section presents our proposed novel algorithm which can come to a compromise between the edge-preservation (including spurious edge-reduction) consideration and the color contrast enhancement. In what follows, we first describe the main concepts used in our proposed algorithm, and then a speedup strategy is given to improve the proposed algorithm.

3.1. The main concept

As mentioned above, our proposed edge-preservation algorithm for color contrast enhancement has two considerations, namely: (1) keeping the edge information after enhancing the color image
in the CIE $L'uv'$ color space and (2) reducing the created spurious edges due to the side effect of the color contrast enhancement. For simplifying the exposition, in what follows, we only focus on the presentation of keeping the edge information after enhancing the color image in the CIE $L'uv'$ color space. In what follows, we will point out how to reduce the created spurious edges due to the side effect of the color contrast enhancement.

In order to keep the edge information in the original RGB color image as the edge-preservation reference, given an RGB color image I, the edge map is first obtained by using the previous edge detector which has been introduced in Section 3.2. For exposition, the obtained edge map is expressed by I_E where $I_E(x,y) = 1$ means the color pixel $I(x,y)$ is an edge (non-edge) pixel. Our proposed color contrast enhancement algorithm mainly consists of three steps, namely: the saturation step, the desaturation step, and the edge-preservation step.

3.1.1. The saturation and desaturation steps

Here, the saturation step and the desaturation step are described. The two steps are adopted from the previous algorithms [13,20].

Given an input color pixel $C = (u', v', Y)$ as shown in Fig. 2(a), in the saturation step, the color pixel C moves forward along the line WC. When the color pixel C intersects the line segment BR', the intersection point is called the maximally saturated color C_s. Because the saturation step affects only chromatic components u' and v', C and C_s are associated with the same brightness component Y where C_s is represented by (u'_s, v'_s, Y).

When all color pixels of a color image have been maximally saturated, the image appears rather unnatural because the displayed colors are only confined at the boundary of the gamut triangle. Therefore, the desaturation step is proceeded to overcome the chromatic information reduction problem in the saturation step. Fig. 2(b) illustrates the concept of desaturation step in order to enrich the colorfulness of the color image. Instead of maximizing the color contrast by using the color point C_s, the modified color point C_{ds} is used according to the Center of Gravity Law of Color Mixture [11]. The three components of the modified color point $C_{ds} = (u'_{ds}, v'_{ds}, Y_{ds})$ are determined by

$$ u'_{ds} = \frac{u'_s + u'_c}{v'_{w} + \frac{Y}{u'_{w} + \frac{Y}{v'_{w}}}}; \quad v'_{ds} = \frac{Y}{v'_s} + Y $$

$$ Y_{ds} = Y + Y_W $$

where $Y_W = kP'$, P' is the mean luminance of the color image and k is a factor to control the luminance.

Since the determined modified color point C_{ds} may generate some degree of edge-loss or add spurious edge points, in next step, an efficient strategy is presented to solve the edge-loss problem occurred in the previous color contrast enhancement method although the proposed strategy can be slightly modified to solve the edge-addition problem. The proposed strategy can keep a good compromise between the color contrast enhancement and the edge-preservation consideration.

3.1.2. The edge-preservation step

When $I_E(x,y) = 1$, i.e. the original color pixel $I(x,y)$ is an edge pixel, it is necessary to examine whether the edge information of the original color pixel has been lost after performing the saturation and desaturation steps. When $I_E(x,y) = 0$, it is necessary to examine whether the mapped color pixel becomes a spurious edge pixel after performing the saturation and desaturation steps.

Fig. 3 is used to depict the concept of our proposed edge-preservation step. After performing the saturation and desaturation steps, instead of enhancing the color contrast by using C_{ds} which may lose the edge information, conceptually the edge-preserving color point $C_{es} = (u'_{es}, v'_{es}, Y_{es})$ is determined to come to a compromise between the edge-preservation and the color contrast enhancement. Here the determined color point C_{es} is the final enhanced color point not only preserving the edge information in the RGB color space inherited from the corresponding pixel, but also enhancing the color contrast as maximal as possible. How to determine the enhanced color point C_{es} from the modified color point C_{ds} will be described in the following paragraphs.

Suppose the window mask used in the adopted color edge detector is of size 3×3. According to row-major scanning order, the sub-image covered by the window mask is illustrated in Fig. 4 where the symbol P denotes the enhanced color pixel which has been processed by using our proposed edge-preserving algorithm for color contrast enhancement; the symbol C denotes the current color pixel being processed and the symbol U denotes the color pixel to be processed. The previous color edge detector is applied to the subimage as shown in Fig. 4 to determine whether the current color pixel is an edge pixel or not. For convenience, let $E(C) = 1^*$ denote that the current color pixel is an edge pixel; otherwise, let $E(C) = 0^*$ denote that the current color pixel is a non-edge pixel.

For the current color pixel, if the condition $E(C) = 1$ holds, the previous color edge detector is used to determine whether the current color pixel C_{ds} is an edge pixel or not. If the current color pixel C_{ds} is an edge pixel, C_{ds} is the final enhanced color and we perform the assignment $C_{es} = C_{ds}$; otherwise, the enhanced color point C_{es} should be determined further by the help of the modified color point C_{ds}.

Suppose the modified color point C_{ds} is not an edge pixel. Fig. 5 depicts the binary alternative search direction in our proposed edge-preservation step to determine the enhanced color point C_{es}, where d denotes the first movement distance and is set to $\frac{1}{\sqrt{2}}$, empirically. By running the previous color edge detector, if the current color pixel $C_{ds(1)}$ is an edge pixel, where $\|C_{es(1)} - C_{ds}\| = d$, we move it to the next color pixel $C_{ds(2)}$ which is the near point of...
Next, by solving the inverse of Eq. (1), the obtained values of \(r \), \(g \), and \(b \) are transferred into the values of \(u' \), \(v' \), and \(w' \) as follows:

\[
\begin{align*}
X &= \frac{u'}{W} + \frac{v'}{V} + \frac{w'}{B} \\
Y &= \frac{v'}{V} + \frac{w'}{B} \\
Z &= \frac{w'}{B}
\end{align*}
\]

where \(X = x/640 + 3/4 \), \(Y = y/640 + 3/4 \), \(z = 1 - x - y \), and \(X + Y + Z = 1 \). Next, by solving the inverse of Eq. (1), the obtained values of \(X \), \(Y \), and \(Z \) in Eq. (3) can be transferred into the values of \(r \), \(g \), and \(b \).

Based on the original Peppers image (see Fig. 6(a)), Fig. 6(b) illustrates the enhanced color image obtained by using the previous color contrast enhancement algorithm. Fig. 6(c) illustrates the enhanced color image obtained by using our proposed color contrast enhancement algorithm. It is observed that both enhanced color images, Fig. 6(b) and (c), have the same color contrast enhancement effect and they look more colorful than that in Fig. 6(a).

3.2. The speedup strategy

In this subsection, a speedup strategy is presented to improve the computational effort in the saturation step of our proposed color contrast enhancement algorithm. In order to quickly obtain the maximally saturated color \(C \), when giving the input color pixel \(C \) an \(O(1) \)-time intersection point determination strategy is presented. Considering only the two chromatic components \(u' \) and \(v' \), first assume the intersection point between line \(WC \) and the gamut triangle is on the segment \(CB' \) (see Fig. 2(a)) where the two end points \(B' \) and \(R' \) have the chromatic values \(u'_{CB} \) and \(v'_{CB} \), respectively. It is known that \(W = (u'_{CB}, v'_{CB}) \) is the white point. According to this assumption, we have the following two equalities:

\[
\begin{align*}
\tau(u' - u'_{CB}) &= u' - u'_{CB} \\
\tau(v' - v'_{CB}) &= v' - v'_{CB}
\end{align*}
\]

Eq. (4) can be rewritten by

\[
\begin{align*}
\tau(u' - u'_{CB}) - \lambda(u' - u'_{CB}) &= u' - u'_{CB} \\
\tau(v' - v'_{CB}) - \lambda(v' - v'_{CB}) &= v' - v'_{CB}
\end{align*}
\]

After solving Eq. (5), if the values of \(\tau \) and \(\lambda \) satisfy \(\tau > 1 \) and \(0 \leq \lambda \leq 1 \), the above assumption, i.e. the intersection point between

Fig. 4. One \(3 \times 3 \) subimage covered by the window mask.

Fig. 5. Binary alternative search direction in edge-preservation step.

Fig. 6. The color contrast enhancement results for Peppers image. (a) Original image. (b) The enhanced image by using the previous algorithm. (c) The enhanced image by using our proposed algorithm.
line \(W_0^C\) and the gamut triangle, is true. If so, the chromatic components \(u_C\) and \(v_C\) of the maximally saturated color \(C_i\) can be computed by the following equation:

\[
\begin{align*}
u_C &= u^C_0 + \tau (u^C_0 - u^C_{\text{old}}) \\
v_C &= v^C_0 + \tau (v^C_0 - v^C_{\text{old}}).
\end{align*}
\]

Otherwise, if the values of \(\tau\) and \(\zeta\) violate the conditions, \(\zeta > 1\) and \(0 < \zeta < 1\), we try to examine next assumption: assume the intersection point between line \(W_0^C\) and the gamut triangle is on the segment \(BC_0\), and so on.

Besides the above strategy to speedup the determination of point \(C_i\) in saturation step, now our proposed history-aid strategy is presented to predict the most possible side of the gamut triangle such that the intersection point of WC is presented to predict the most possible side of the gamut triangle. In general, the intersection point between WC and the gamut triangle may be on the side \(RF, BC_0\), or \(CR\). Heuristically, each side of the gamut triangle must be examined one-by-one to test whether the intersection point is on that side or not. However, due to the color locality property, especially in smooth regions, moving the point \(C\) forward along the line \(W_0^C\) will usually intersect the same side which has been determined in the iteration. If the proposed history-aid strategy does not work, the other two sides of gamut triangle are further checked. Experimental results show that the proposed \(O(1)\)-time intersection point determination strategy and the history-aid strategy have a good computation-saving effect and in average 20\% (\(=\frac{\text{old time} - \text{new time}}{\text{old time}}\) \(\times 100\%\)) execution-time improvement ratio is obtained when compared to the heuristic approach for determining the side of gamut triangle. Besides the \(u'v'\) chromatic domain in the gamut triangle, luminance (\(Y\)) channel may be considered in our proposed history-aid strategy.

Based on the four testing images, the Pepper, F14 image, Table Tennis image, and Akjyo image (see Section 5), in average, the total execution-time required in the previous color contrast enhancement algorithm to map the RGB color domain into the CIE \(L_u'v'\) domain is 0.149 s. Based on the same testing images, in average, the total execution-time required in our proposed edge-preserving algorithm without considering the binary alternative search strategy and the history-aid strategy is 0.788 s. Employing the two speedup strategies in our proposed edge-preserving algorithm is 0.347 s. In summary, the time required in any one of the above three concerned algorithms is much less than 1 s. Once the previous enhanced color images and our obtained enhanced color images have been obtained, they can be reused in any color image operations such as edge detection, segmentation, etc. Based on the same testing images, experimental results demonstrate that in average, the execution-time required in color image segmentation (see next section) is more then 3 s. Therefore, the time required in color contrast enhancement could be ignored when compared to the ones in color image operations.

4. Color image segmentation application

In this section, our proposed novel color image segmentation algorithm, which uses the enhanced color image obtained in Section 3 to be the input image, is presented. In Section 5, some experiments will be carried out to demonstrate the edge-preserving benefit in our proposed color image segmentation algorithm.

Our proposed color image segmentation algorithm consists of two major phases, namely the seed-based region growing phase and the merging phase. Maybe some other color segmentation algorithms [30,12,6] also have better segmentation results on our obtained enhanced color image when compared to those on the previous obtained enhanced color image without edge-preservation.

4.1. The seed-based region growing phase

Our proposed seed-based region growing phase is modified from the previous ones in [1,7,16,24]. In what follows, two major stages of the seed-based region growing phase, namely the seed determination stage and the region growing stage, are presented.

4.1.1. The seed determination stage

The seeds used in the seed-based region growing phase are the homogeneous pixels of the input color image and are selected when their homogeneity levels are greater than the threshold. The homogeneity level of one pixel in the image is determined by its standard deviation and discontinuity of the subimage covered by the \(w \times w\) window mask. Let \(C_u\) denote the color information of pixel \(P_{ij}\) at location \((i,j)\) in the image and the window mask be centered at \((i,j)\). The standard deviation of each component of \(P_{ij}\) can be obtained by

\[
\sigma_{C_u} = \sqrt{\frac{1}{w^2} \sum_{m=i-w}^{i+w} \sum_{j=j-w}^{j+w} (C_{mn} - \mu_u)^2}
\]

where \(C_u \in \{Y, u', v'\}\) and

\[
\mu_u = \frac{1}{w^2} \sum_{m=i-w}^{i+w} \sum_{j=j-w}^{j+w} C_{mn}.
\]

The discontinuity of pixel \(P_{ij}\) is measured by its neighboring edge information. By Eq. (3), the calculated value of MVD is assigned to \(\sigma_{T_{ij}}\), i.e.

\[\omega_{T_{ij}} = \text{MVD}.
\]

Let

\[
\begin{align*}
\sigma_{P_{ij}} &= \frac{\sigma_u}{\sigma_{\text{max}}} \\
v_{P_{ij}} &= \frac{v_p}{v_{\text{max}}}
\end{align*}
\]

where \(\sigma_u = \sigma + \sigma_u + \sigma_v\), \(\sigma_{\text{max}} = \text{Max}(\sigma_{T_{ij}})\), and \(v_{\text{max}} = \text{Max}(v_{P_{ij}})\). It is easy to check that the values of \(\sigma_{P_{ij}}\) and \(v_{P_{ij}}\) are within the range [0,1]. When \(\sigma_{P_{ij}}\) and \(v_{P_{ij}}\) are large, the pixel \(P_{ij}\) could be defined to be a non-homogenous pixel. Therefore, the homogeneity level of pixel \(P_{ij}\) is defined as

\[H_{P_{ij}} = 1 - (\sigma_{P_{ij}} \times v_{P_{ij}}).
\]

When the value of \(H_{P_{ij}}\) for pixel \(P_{ij}\) at location \((i,j)\) is greater than the specified threshold \(T_H\), the pixel \(P_{ij}\) is selected to be a seed which will be used in the second stage of this phase. Let \(T_H = 0.99\), the blue color pixels shown in Fig. 7 are the determined seeds in the enhanced color Peppers image as shown in Fig. 6(b).

Fig. 7. The determined seeds as shown in blue colors of the enhanced Peppers image.
4.1.2. The region growing stage

After determining the seeds from the enhanced color image, the region growing stage is followed to gather the relevant pixels for each region. The region growing stage consists of the following four steps:

Step 1: Connect the adjacent seeds and assign the same region number to them. That is, adjacent seeds are treated as a large seed of the image.

Step 2: Examine the connected neighbors of the seeds and mark the pixels which are not seeds. Then, compute the color contrast between each marked pixel and its adjacent regions, each region only consisting of seeds. The color contrast level between the marked pixel \(p_m \) and its adjacent region \(R_i \) is measured by

\[
C(p_m, R_i) = \sqrt{(Y_{p_m} - Y_{R_i})^2 + (u_{p_m} - u_{R_i})^2 + (v_{p_m} - v_{R_i})^2}
\]

where \(Y_{p_m}, u_{p_m}, \) and \(v_{p_m} \) are the mean values of the three CIE components of region \(R_i \).

Step 3: Select the minimum one among these calculated color contrast levels and its associated \(p_m \) and \(R_i \). Then, put the associated marked pixel \(p_m \) into the region \(R_i \) and remark the connected neighbors of \(p_m \).

Step 4: According to the color contrast level measure defined in Step 1, update the color contrast level between the updated region \(R_i \) and its adjacent marked pixels. Then, repeat Step 3 until all pixels in the image have found their regions.

The above seed-based region growing phase may over-segment the enhanced color image. After performing the above seed-based region growing phase on the enhanced Peppers image as shown in Fig. 6(b), Fig. 8 illustrates the related over-segmented result. Due to this over-segmentation problem, it is necessary to merge the similar regions in the over-segmented image further. In next subsection, our proposed merging phase is presented to alleviate this over-segmentation problem. In our proposed merging phase, the fruitful edge information preserved in the enhanced color image, which has been obtained by using our proposed edge-preserving algorithm for color contrast enhancement, can result in a more desirable segmentation result.

4.2. The merging phase

This subsection presents our proposed novel merging phase. Let \(R_i \) and \(R_j \) be two adjacent regions. For measuring the difference between the two adjacent regions \(R_i \) and \(R_j \), we first compute the difference between the centroid and the geometric center of \(R_i \) \((= R_i \cup R_j)\), the color moment difference between \(R_i \) and \(R_j \), and the boundary edge information between \(R_i \) and \(R_j \). Since the enhanced color image obtained by our proposed edge-preserving algorithm for color contrast enhancement has more true edge information, we believe that our proposed merging phase used in color image segmentation does inherit the edge-preserving benefit and it will lead to better color image segmentation result.

The centroid of \(R_i \) \((= R_i \cup R_j)\) [8] is given by

\[
(C_{R_i}, C_{R_j}) = \frac{(m_0, m_0)}{(m_0, m_0)}
\]

where \(m_0 = \sum_{(x, y) \in R_i} f(x, y), m_0 = \sum_{(x, y) \in R_j} f(x, y), \) and \(m_0 = \sum_{(x, y) \in R_i \cup R_j} f(x, y) \). Let \(f(x, y) \) denotes the relevant three components of the enhanced color image. The geometric center of \(R_i \) is given by

\[
(G_{C_{R_i}}, G_{C_{R_j}}) = \frac{(m_{10}, m_{01})}{(m_{00}, m_{00})}
\]

where \(m_{10} = \sum_{(x, y) \in R_i} x f(x, y), m_{10} = \sum_{(x, y) \in R_j} x f(x, y), \) and \(m_{10} = \sum_{(x, y) \in R_i \cup R_j} x f(x, y) \). From the above defined centroid and geometric center, the difference between the centroid and geometric center of \(R_i \) is measured by

\[
D_{CC_i}(R_i, R_j) = ||(G_{C_{R_i}}, G_{C_{R_j}}) - (C_{R_i}, C_{R_j})||
\]

The larger the difference between the centroid and geometric center of \(R_i \), the more improper the merge of \(R_i \) and \(R_j \).

Besides the difference between the centroid and geometric center of \(R_i \), the color difference between \(R_i \) and \(R_j \) is also employed to be a factor in the proposed merging phase. Based on the color domain histogram moments [15,18,27], our proposed color domain difference between \(R_i \) and \(R_j \) is given by

\[
CD(R_i, R_j) = ||C_{R_i} - C_{R_j}||
\]

where \(C_{R_i} = (C_{R_i}, C_{R_j}) = \frac{(m_{10}, m_{01})}{(m_{00}, m_{00})} \). \(M_{pq} = \sum_{(x, y) \in R_i \cup R_j} m_{pq} \) denotes the number of pixels in the RGB color image where these related pixels are mapped to the same region \(R \) in \((x, y)\)-domain. In Eq. (7), \(C_{R_i} \), \(C_{R_j} \) denotes the color domain centroid of region \(R \); \(M_{pq} \) denotes the color histogram moment of region \(R \); \(D_{CC_i}(R_i, R_j) \) denotes the relevant two-dimension histogram.

Besides Eqs. (6) and (7), the boundary edge information between \(R_i \) and \(R_j \) [17] is definitely used to measure the difference of two adjacent regions in the proposed merging phase. It has been defined that the edge map obtained from the enhanced color image \(l \) is denoted by \(l_{x,y} \) where \(l_{x,y} = 1 \) \((= 0)\) means the color pixel \(l(x, y) \) is an edge (non-edge) pixel. Let \(B_{l_{x,y}} \) be the set of pixel locations which constitute the positions of boundary between two regions \(R_i \) and \(R_j \). The ratio of the edge information occupied on the boundary can be expressed by

\[
\gamma_E(R_i, R_j) = \frac{\sum_{(x, y) \in B_{l_{x,y}}} I_{l(x,y)}}{|B_{l_{x,y}}|}
\]

where \(|B_{l_{x,y}}| \) denotes the number of pixels on the boundary \(B_{l_{x,y}} \).

By Eqs. (6)–(8), when the values of \(D_{CC_i}(R_i, R_j), CD(R_i, R_j) \) and \(\gamma_E(R_i, R_j) \) are larger, the two adjacent regions \(R_i \) and \(R_j \) are more different from each other. Integrating the above three difference measures, the difference between two adjacent regions \(R_i \) and \(R_j \) can be defined by

\[
D_T(R_i, R_j) = w_1 \times \frac{D_{CC_i}(R_i, R_j)}{D_{CC_i}(\max)} + w_2 \times \frac{CD(R_i, R_j)}{CD(\max)} + w_3 \times \gamma_E(R_i, R_j)
\]

Fig. 8. The over-segmented result after performing the seed-based region growing phase on the enhanced Peppers image in Fig. 6(b).
where $D_E^{(\max)} = \max_{i,j} \{D_E(R_i, R_j)\}$ and $CD^{(\max)} = \max_{i,j} \{CD(R_i, R_j)\}$; $\rho_k^{(R_i, R_j)}$, $\Omega_k^{(R_i, R_j)}$, and $\gamma_k^{(R_i, R_j)}$ are within the range $[0,1]$; empirically, the three weights are set to $w_1 = 1$, $w_2 = 1.8$, and $w_3 = 2.5$.

Based on the above description, in summary, our proposed merging phase consists of the following three steps:

Step 1: For each region R_i, consider all its adjacent regions R_j's and compute all the differences $D_t(R_i, R_j)$s by Eq. (9).

Step 2: Select the minimum difference $D_t(R_i, R_j)$ among those calculated $D_t(R_i, R_j)$s obtained from Step 1. When the selected minimal $D_t(R_i, R_j)$ is greater than the specified threshold or the current segmented image only contains a region, output the segmentation result and stop this phase. Otherwise, go to Step 3.

Step 3: Merge R_i and R_j into a region. After merging R_i and R_j, by Eq. (9), update all the related differences $D_t(R_i, R_j)$s and $D_t(R_i, R_k)$s for all the concerned two adjacent region-pairs (R_i, R_j) and (R_i, R_k). Go to Step 2.

After presenting two phases of our proposed color segmentation algorithm, next section will illustrate the segmentation result by running our proposed color segmentation algorithm on our obtained enhanced color image and compare it with the segmentation result by running our proposed color segmentation algorithm on the enhanced color image obtained by the previous color contrast enhancement algorithm.

5. Experimental results

In this section, some experimental results are demonstrated to show that our proposed algorithm has a good compromise between the edge-preservation effect and the color contrast enhancement effect when compared to the previous algorithm [13,20]. Besides, some experiments are carried out to demonstrate the edge-preservation benefit of our proposed color image segmentation algorithm when running it on the enhanced color image obtained by the proposed color contrast enhancement algorithm. For convenience, the enhanced color image obtained by the previous color contrast enhancement algorithm is called the previous obtained enhanced color image; the enhanced color image obtained by our proposed color contrast enhancement algorithm is called our obtained enhanced color image.

Fig. 9(a) illustrates the edge map of the original Peppers image shown in Fig. 6(a). The edge map of the previous obtained enhanced color Peppers image is illustrated in Fig. 9(b). The edge map of our obtained enhanced color Peppers image is illustrated in Fig. 9(c) and it is observed that our obtained edge map of each pepper is quite similar to that in the original edge map (see Fig. 9(a)). However, the edge map in Fig. 9(b) is somewhat different from the original edge map. Quantitative demonstrations (see Figs. 11, 12, and Tables 1 and 2) will be given later to explain why Fig. 9(c) is better than Fig. 9(b). Besides the color contrast enhancement effect existed in the previous color contrast enhancement algorithm and our proposed one (see Fig. 6(b) and (c)), the edge-preservation effect of our proposed color contrast enhancement algorithm is better than that of the previous enhancement algorithm.

After demonstrating the color contrast enhancement benefit of both algorithms and the edge-preservation benefit of our proposed algorithm over the previous algorithm, let us take F14 color image (see Fig. 10(a)) as the second testing image. Fig. 10(b)–(f) demonstrate the edge map of the original color F14 image after running the previous color edge detector, the previous obtained enhanced color image, the edge map of the previous obtained enhanced color image, our obtained enhanced color image, and the edge map of our obtained enhanced image, respectively. Similar to the performance evaluation for color Peppers image, experimental results for color F14 image also reveal that the previous and our proposed color contrast enhancement algorithms make the original F14 image more colorful. In addition, our proposed enhancement algorithm has better edge-preservation effect when compared to the previous enhancement algorithm.

Next, we adopt the set of edge-losing pixels and the set of edge-adding pixels to demonstrate the edge-preservation effect of our proposed color contrast enhancement algorithm. It has been defined that the edge map of the original image is expressed by I_E and $I_E(x,y) = 1$ ($=0$) denotes that the color pixel $I(x,y)$ is an edge (non-edge) pixel. Let I_E denote the edge map when running the previous color edge detector on the related enhanced color image.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Previous algorithm</th>
<th>Our proposed algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peppers (%)</td>
<td>31.17</td>
<td>9.34</td>
</tr>
<tr>
<td>F14 (%)</td>
<td>31.69</td>
<td>12.92</td>
</tr>
<tr>
<td>Table Tennis (%)</td>
<td>23.93</td>
<td>4.75</td>
</tr>
<tr>
<td>Akiyo (%)</td>
<td>18.72</td>
<td>5.10</td>
</tr>
<tr>
<td>Average (%)</td>
<td>24.78</td>
<td>7.59</td>
</tr>
<tr>
<td>Improvement ratio (%)</td>
<td>69.37</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Previous algorithm</th>
<th>Our proposed algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peppers (%)</td>
<td>10.18</td>
<td>8.92</td>
</tr>
<tr>
<td>F14 (%)</td>
<td>7.08</td>
<td>5.15</td>
</tr>
<tr>
<td>Table Tennis (%)</td>
<td>11.77</td>
<td>11.63</td>
</tr>
<tr>
<td>Akiyo (%)</td>
<td>15.30</td>
<td>14.27</td>
</tr>
<tr>
<td>Average (%)</td>
<td>13.08</td>
<td>9.99</td>
</tr>
<tr>
<td>Improvement ratio (%)</td>
<td>9.64</td>
<td></td>
</tr>
</tbody>
</table>
The set of edge-losing pixels in the resulting edge map is denoted by N_{el}. Each pixel in the set of edge-losing pixels must satisfy $I_E(x,y) = 1$ and $I_{EE}(x,y) = 0$. On the other hand, one pixel is called the edge-losing pixel when the pixel is an edge pixel in the original color image, but the pixel at the same position in the enhanced image is a non-edge image pixel. Alternatively, the set of edge-adding pixels in the resulting edge map is denoted by N_{ea}, and each pixel in the set of edge-adding pixels must satisfy $I_E(x,y) = 0$ and $I_{EE}(x,y) = 1$. Fig. 11(a) and (b) illustrate the set of edge-losing pixels N_{el} for the edge map of the previous obtained enhanced color Peppers image (see Fig. 9(b)) and the edge map of our obtained enhanced color Peppers image (see Fig. 9(c)), respectively. Fig. 12(a) and (b) illustrate the set of edge-adding pixels N_{ea} for the edge map of the previous obtained enhanced color Peppers image and the edge map of our obtained enhanced color Peppers image, respectively. By Figs. 11 and 12, our obtained enhanced color image has less edge-losing pixels and edge-adding pixels when compared to the previous obtained enhanced color image. Then, the set of edge-losing pixels N_{el} for the edge map of the previous obtained enhanced color F14 image (see Fig. 10(d)) and the edge map of our obtained enhanced color F14 image (see Fig. 10(f)) are illustrated in Fig. 13(a) and (b), respectively; the set of edge-adding pixels N_{ea} for the edge map of the previous obtained enhanced color F14 image and the edge map of our obtained enhanced color F14 image are illustrated in Fig. 14(a) and (b), respectively. From the above demonstrations, our proposed color contrast enhancement
algorithm has better edge-preservation effect when compared to
the previous color contrast enhancement algorithm.

In order to quantify the edge-preservation effect of our
proposed color contrast enhancement algorithm, the edge-loss
ratio and edge-addition ratio are defined. The edge-loss ratio R_{el} is defined as

$$R_{el} = \frac{|N_{el}|}{|I_{E}(x, y) = 1|}$$

where $|N_{el}|$ denotes the number of edge-losing pixels in the
resulting edge map; $|I_{E}(x, y) = 1|$ denotes the number of edge pixels
in the original image. Contrary to the defined edge-loss ratio, the
edge-addition ratio R_{ea} is defined as

$$R_{ea} = \frac{|N_{ea}|}{|I_{E}(x, y) = 1|}$$

Further, we take the color Peppers image to depict the visual
difference-preserving effect. Fig. 16(a) illustrates the segmentation re-
sult when running our proposed segmentation algorithm on the
original image. Fig. 16(b) illustrates the magnified subimage cut
from the left portion of one red pepper in Fig. 16(a) and the edge
diagram of Fig. 16(b) is illustrated in Fig. 16(c). Fig. 16(d) and (e) illus-
trate the segmentation results when running our proposed seg-
mentation algorithm on the previous obtained enhanced color
image and running the same proposed segmentation algorithm on
our obtained enhanced color image which has the edge-pre-
serving effect, respectively. Fig. 16(f) illustrates the magnified sub-
image cut from the left portion of one red pepper in Fig. 16(d) and
the edge diagram of Fig. 16(f) is illustrated in Fig. 16(g). The magnified subimage cut from the same portion of the same red pepper in

Fig. 12. The set of edge-adding pixels N_{ea} for color Peppers image. (a) N_{ea} for the
previous obtained enhanced color Peppers image. (b) N_{ea} for our obtained enhanced
color Peppers image.

Fig. 13. The set of edge-losing pixels N_{el} for color F14 image. (a) N_{el} for the
previous obtained enhanced color F14 image. (b) N_{el} for our obtained enhanced color F14 image.

Fig. 14. The set of edge-adding pixels N_{ea} for color F14 image. (a) N_{ea} for the
previous obtained enhanced image. (b) N_{ea} for our obtained enhanced image.
Fig. 16(e) is illustrated in Fig. 16(h) and (i) depicts the edge map of Fig. 16(h). After comparing the three edge maps of magnified subimages (see Fig. 16(c), (g), and (i)), it is observed that the edge map Fig. 16(i) is quite similar to Fig. 16(c), but Fig. 16(g) is some different from Fig. 16(c). In addition, the density and the distribution of edge pixels of Fig. 16(i) are rather close to those in Fig. 16(c), but the density of edge pixels of Fig. 16(g) is some sparse and is much less than that in Fig. 16(c). Tables 1 and 2 reveal that for the color Peppers image, the edge-loss improvement ratio and edge-addition improvement ratio of our proposed color contrast enhancement algorithm over the previous enhancement algorithm are 70.04% (\(\frac{0.3117 - 0.0934}{0.3117} \times 100\%\)) and 12.38% (\(\frac{0.1018 - 0.0892}{0.1018} \times 100\%\)), respectively, and it justifies the edge-preserving effect of our proposed color contrast enhancement algorithm. After comparing Fig. 16(h) with Fig. 16(b) and comparing Fig. 16(f) with Fig. 16(b), it is observed that our segmentation result when running the proposed segmentation algorithm on our obtained enhanced color image (see Fig. 16(h)) is better than the segmentation result (see Fig. 16(f)) when running the proposed segmentation algorithm on the previous obtained enhanced color image. Especially, the segmented boundary of the right pepper in Fig. 16(h) is more clear than that in Fig. 16(f) because our color contrast enhancement improves the segmentation quality.

Further, the color F14 image is used to be the second testing image for segmentation comparison when running the proposed segmentation algorithm on the original F14 image and two kinds of enhanced F14 images. From the cockpit part of Fig. 17, it is observed that the number of preserved edge pixels and the distribution of edge pixels in Fig. 17(i) are quite similar to Fig. 17(c). However, the number of preserved edge pixels in Fig. 17(i) is greater than the one in Fig. 17(g). Tables 1 and 2 provide the qualitative evidences. After examining Fig. 17(a), (d), and (e), it is observed that the edge-preserving effect of our proposed color contrast enhancement improves the segmentation quality. For color Table Tennis image and color Akiyo image, we have the same segmentation quality improvement due to our proposed color contrast enhancement. Finally, Fig. 18(a) and (b) demonstrate the good segmentation results when running our proposed color segmentation algorithm on our obtained enhanced color Table Tennis image and color Akiyo image, respectively. For saving space, we ignore the elaborated comparison.

6. Conclusions

In this paper, a novel and efficient edge-preserving algorithm has been presented for color contrast enhancement in the CIE \(L_u^*v^*_\) color space although our proposed algorithm can be applied to the other color spaces, such as the CIE \(xyY\) color space. In order to improve the computational effort of the proposed algorithm, a speedup strategy has also been given. To the best of our knowledge, this is the first edge-preserving algorithm for color contrast enhancement in color space.
Further, a new color image segmentation has been presented to justify the edge-preservation effect. Some experimental results have been carried out to demonstrate that our proposed color contrast enhancement algorithm has a good compromise between the edge-preservation effect and the color contrast enhancement effect when compared to the previous algorithm. Besides, experimental results also confirms that the edge-preserving effect of our proposed color contrast enhancement improves the segmentation quality.

It is an interesting research topic to apply the results of this paper to the field of color image retrieval issue [5,9,10,19] when the relevant retrieval techniques include the consideration of edge information.

References

