A 4–91-GHz Traveling-Wave Amplifier in a Standard 0.12-μm SOI CMOS Microprocessor Technology

Jean-Olivier Plouchart, Member, IEEE, Jonghae Kim, Member, IEEE, Noah Zamdmer, Liang-Hung Lu, Melanie Sherony, Yue Tan, Member, IEEE, Robert A. Groves, Member, IEEE, Robert Trzcinski, Mohamed Talbi, Asit Ray, and Lawrence F. Wagner, Member, IEEE

Abstract—This paper presents five-stage and seven-stage traveling-wave amplifiers (TWA) in a 0.12-μm SOI CMOS technology. The five-stage TWA has a 4–91-GHz bandpass frequency with a gain of 5 dB. The seven-stage TWA has a 5–86-GHz bandpass frequency with a gain of 9 dB. The seven-stage TWA has a measured 18-GHz noise figure, output 1-dB compression point, and output third-order intercept point of 5.5 dB, 10 dBm, and 15.5 dBm, respectively. The power consumption is 90 and 130 mW for the five-stage and seven-stage TWA, respectively, at a voltage power supply of 2.6 V. The chips occupy an area of less than 0.82 and 1 mm for the five-stage and seven-stage TWA, respectively.

Index Terms—Broadband CMOS circuit, CPW transmission line, high gain bandwidth product, SOI, traveling waveguide amplifier.

I. INTRODUCTION

TRAVELING-WAVE amplifier architecture (TWA) is widely used for broadband amplification in high-speed communication systems as well as for broadband radar applications. Several papers using state-of-the-art compound III-V technologies have reported frequency bandwidth as high as 50–100 GHz [1]–[3]. With the advance of deep-submicron CMOS technology, NFET devices with high F_t and F_{max} cut-off frequency are now available to the designer. However, despite recent progresses made by CMOS technology, the reported bandwidth for distributed amplifiers is still below 23 GHz [4]. These much lower performances achieved by bulk CMOS technology are due to the much higher parasitic capacitance of bulk silicon FETs as compared to III-V technologies. Another issue for silicon technologies is the losses in transmission lines like coplanar waveguide above the lossy silicon substrate. Silicon-on-insulator (SOI) CMOS is well known for its advantages for high-speed and low-power microprocessor applications [5]. SOI CMOS is also recently emerging as a possible candidate to expand CMOS to low-power millimeter-wave digital and RF applications [6], [13]. In this paper, we describe a five- and seven-stage broadband distributed amplifier fabricated in a SOI CMOS technology with a 3-dB cut-off frequency as high as 91 GHz.

Fig. 1. NFET current gain cut-off and transconductance versus gate length.

II. 0.12-μm SOI MICROPROCESSOR TECHNOLOGY

The TWA was designed in a 0.12-μm SOI CMOS microprocessor production technology without any process modification. This technology offers a low-parasitic NFET transistor with a measured peak F_t in excess of 150 GHz for gate length smaller than 60 nm (Fig. 1). As shown in Fig. 1, with a measured NFET transconductance of more than 1-mS/μm, this technology is comparable to state-of-the-art GaAs FET. In order to achieve the highest F_{max} possible, the multifinger FET layout must be optimized. A F_{max} in excess of 200-GHz was measured for a width of 2 μm per finger, as well as a minimum noise figure of less than 2 dB up to 26 GHz [14]. The technology also offers a hierarchical eight copper metal-layers in a FTEOS dielectric, a poly-resistor, and a MOS capacitor.

One of the main challenges with digital silicon technology is the integration and modeling of the transmission line and a linear capacitor on lossy Si substrate. Microstrip lines, with ground plane on the first layer of metal and signal on the last layer of metal can be used. However, since the last layer of Cu metal is only 9.8-μm from the Si substrate, the integration of
low-losses 50-Ω microstrips is difficult. In the coplanar waveguide (CPW) configuration, the distance between the ground planes and the signal line is a free parameter (Fig. 2). The drawback of CPW is that the signal is not any more shielded from the substrate, and if the signal line is too wide, substrate losses are high. Fig. 2 shows a simplified equivalent circuit used to model the CPW line on SOI. This model includes the inductor line, its associated resistor to model the ohmic losses, the capacitive coupling to the substrate and to the ground planes, as well as the substrate high-pass RC network. Beyond the frequency relaxation of the substrate, which is 10 GHz for the 15-Ω·cm substrate used to fabricate the circuit, the substrate resistor is shorted by the substrate capacitor, and the CPW behaves more like a regular CPW on insulator substrate.

The CPWs were implemented on the last 1.2-μm-thick metal layers to reduce the parasitic capacitance to the substrate. Since no MIM capacitors are available in a digital process, we integrated a linear capacitor in a standard microprocessor by designing a 3-D vertical parallel plate capacitor [15]. We measured a record density of 1.8-fF/μm² in an eight layers of metal FTOES BEOL for the vertical native capacitor, with Q higher than 100 at 1 GHz for a 1.1-pF capacitor and a resonant frequency of 10 GHz.

III. 4–90-GHz CPW SOI DISTRIBUTED AMPLIFIER DESIGN

Fig. 3 shows a circuit schematic of the n-stage distributed amplifier. The circuit is based on cascode cells \((Q_{1a}, Q_{1b})\) that allow good isolation and high cut-off frequency. Each amplifier cell is part of an input and output transmission line. The input cascode-cell capacitor, mainly \(Q_{1a}C_{gs}\), contributes to the input transmission line impedance. The output cascode-cell capacitor, mainly \(Q_{1b}C_{ds}\), contributes to the output transmission line impedance. Therefore, the transmission lines were synthesized taking into account \(Q_{1a}C_{gs}\) and \(Q_{1b}C_{ds}\) to achieve 50-Ω matching. Usually, RF S-parameters taken on a transistor provide accurate data for the TWA design. In this design, we took advantage of the scalable FET model to optimize the width of \(Q_{1a}\) and \(Q_{1b}\), so that \(Q_{1a}C_{gs}\) and \(Q_{1b}C_{ds}\) are equal. This allows, unlike previously reported implementations, to achieve a compact, simple and perfectly symmetrical layout. The cascode transistors are biased through the bias resistor \(R_n\). A bypass capacitor \(C_n\) is used to avoid, to draw current in the 50-Ω input and output matching resistors. However, \(C_n\) capacitors give a bandpass structure to the amplifier. In theory, \(C_n\) can be chosen arbitrarily high to satisfy any low-frequency system requirement. Practically, the \(C_n\) size is limited by its resonant frequency. This was a great concern for the design, because there was limited data available beyond 40 GHz for passive components. The \(Q_{1a}\) gate and \(Q_{1b}\) drain are biased through the Vectorial Network S-parameters Analyzer bias-tee. The ground metal islands in between amplifier stages are connected to the peripheral metal ground through metal strips. The eight metal layers were fully used to simplify the layout and reduce the overlap parasitic capacitors between metal lines.

IV. MEASURED RESULTS

All the measurements were done on wafer using a 110-GHz Vectorial Network analyzer. The five- and seven-stage distributed amplifiers were measured at a biasing current of 35 and 51 mA, respectively, and \(V_{dd} = 2.6\) V. Fig. 4 shows the measured gain S21 up to 110 GHz. A gain of 5 and 9 dB is achieved with a 3-dB cut-off frequency of 91 and 86 GHz for the five- and three-stage amplifiers, respectively. A state-of-the-art 0.18-μm bulk CMOS TWA reported in [4] is shown as a reference (Fig. 4). Below 4 GHz, the gain increases because of the small bypass capacitor used. The low-frequency cut-off can be decreased by using a larger decoupling capacitor or by using some active matching techniques.

Fig. 5 shows the input reflection coefficient up to 110 GHz. The input matching is better than −7 dB from 4 GHz up to 110 GHz. Below 4 GHz, the amplifier is not well matched because of the size of the bypass capacitor \(C_n\) used. Once plotted on a Smith chart (Fig. 6), the input reflection coefficient, behaves as expected as a spiral, because of increasing CPW transmission losses with frequency. The output reflection coefficient exhibits the same behavior as for the input. The spiral centers is slightly offset from the 50-Ω Smith-chart center, due to an underestimation of the line capacitor by our models, shifting the CPW line impedance to a lower impedance than 50 Ω. The output matching is better than −7 dB from 4 GHz up to 90 GHz. Fig. 7 shows the measured isolation up to 110 GHz. The isolation is better than 15 and 20 dB up to 110 and 60 GHz for both TWAs, respectively. The isolation is surprisingly good for Si technology in the 100-GHz regime. All these measurements demonstrate that, if carefully designed, the 3-D vertical parallel plate capacitor and the CPW on SOI are low-loss, very broadband, and do not exhibit parasitic resonant frequencies up to 110 GHz. It also demonstrates that the input and output pads on lossy Si substrate can be designed to properly launch electromagnetic waves up to 90 GHz. All the measurement data include the effects of the input and output RF pads. In other words, the input and output pads were not calibrated out. The input and output RF pads seem not to degrade the performance of the TWA even up to 100 GHz, because the pads are part of the CPW transmission lines. Fig. 8 shows the output power versus input power measured at 20 GHz for the seven-stage TWA. A 10-dBm output 1-dB compression point is measured at 20 GHz. This demonstrates that significant output power can also be generated by Si technology at millimeter-wave frequency. Some measurements were also done at 50 GHz, but because of the increased cable losses and frequency synthesizer output power drop beyond 20
GHz, we were not able to compress the TWA at that frequency. As shown in Fig. 9, at 50 GHz the third-order output IP3 is 16 and 15.5 dBm for the five- and seven-stage TWAs, respectively. We did some other IP3 measurements at 20 GHz, and we measured a 10.5- and 15-dBm output IP3 for the five- and seven-stage TWA, respectively. The 20-GHz output IP3 for the five-stage TWA is much lower for some reasons we do not yet understand. Noise measurements were taken between 10 and 18 GHz on 50 Ω, as shown in Fig. 10, with an Agilent 8971 C down-converter and 8970 B noise figure meter. A 5.5-dB noise figure...
V. STATE-OF-THE-ART DISTRIBUTED AMPLIFIER DESIGN COMPARISON

Table I compares several distributed amplifiers designed in different technologies for gain, matching, bandwidth, and area. The 0.12-μm SOI TWA exhibits four times higher 3-dB cut-off frequency than previously reported state-of-the-art 0.18-μm bulk RF CMOS technology. For the first time a CMOS technology can offer gain, bandwidth, and power performances comparable to state-of-the-art compound III-V technologies. The improvement in gain and bandwidth highlight the low-parasitic and high-\(F_{\text{max}}\) advantages of SOI technology over bulk technology. A quality factor for the SOI NFET-based TWA can be defined as the ratio of the 3-dB cut-off frequency of the TWA to the current gain cut-off frequency. In our case, this factor is about 60%, which is slightly lower than the one reported by mature III-V technologies [2], which is 70%. The gain-bandwidth product (GBW) is 161 and 242 GHz for the five- and seven-stage TWA, respectively. Table II compares noise figure, linearity, and power consumption. The noise performance is comparable to other state-of-the-art TWA.

Table I

<table>
<thead>
<tr>
<th>Technology</th>
<th>S21 (dB)</th>
<th>S11/S22 (dB)</th>
<th>Bandwidth (GHz)</th>
<th>Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18-μm bulk CMOS</td>
<td>7.3 ± 0.8</td>
<td>< -8 / < -9</td>
<td>0.6 - 22</td>
<td>0.90 X 1.50</td>
</tr>
<tr>
<td>InAlAs HBT</td>
<td>5.1 ± 1.2</td>
<td>< -5 / < -5</td>
<td>2.0 - 50</td>
<td>1.80 X 1.20</td>
</tr>
<tr>
<td>InP HEMT</td>
<td>14 ± 0.8</td>
<td>< -9 / < -10</td>
<td>1.0 - 90</td>
<td>2.50 X 1.10</td>
</tr>
<tr>
<td>GaAs HEMT</td>
<td>6.0 ± 1.0</td>
<td>< -13 / < -4</td>
<td>2.0 - 50</td>
<td>1.97 X 1.25</td>
</tr>
<tr>
<td>SOI-7stg</td>
<td>7.8 ± 1.3</td>
<td>< -7 / < -7</td>
<td>4.0 - 86</td>
<td>1.46 X 0.72</td>
</tr>
<tr>
<td>SOI-5stg</td>
<td>4.0 ± 1.2</td>
<td>< -7 / < -7</td>
<td>4.0 - 91</td>
<td>1.11 X 0.72</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Technology</th>
<th>N.F. (dB)</th>
<th>OP1dB (dBm)</th>
<th>OIP3 (dBm)</th>
<th>Vdd (V)</th>
<th>PDC (mW)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18-μm bulk CMOS</td>
<td>4.3-6.1</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>52</td>
<td>[4]</td>
</tr>
<tr>
<td>InAlAs HBT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>89</td>
<td>[1]</td>
</tr>
<tr>
<td>InP HEMT</td>
<td>8.0 - 9.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>[2]</td>
</tr>
<tr>
<td>GaAs HEMT</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>15</td>
<td>1900</td>
<td>[3]</td>
</tr>
<tr>
<td>SOI-7stg</td>
<td>5.0 - 3.6</td>
<td>10</td>
<td>15.5</td>
<td>2.6</td>
<td>130</td>
<td>This work</td>
</tr>
<tr>
<td>SOI-5stg</td>
<td>6.2 - 4.2</td>
<td>9</td>
<td>16</td>
<td>2.6</td>
<td>90</td>
<td>This work</td>
</tr>
</tbody>
</table>

Fig. 8. Measured 1-dB compression point for the seven-stage TWA.

Fig. 9. Third-order IMD measurements at 50 GHz.
power, for Si technology, generated at millimeter frequency. The actual chip areas are less than 0.82 and 1 mm² for the five-stage and seven-stage TWA, respectively. These results demonstrate that broadband and low-losses pads and passives can be integrated in a standard SiO technology. It also demonstrates, with such a fundamental amplification function, the low-parasitic advantage of SiO over bulk CMOS technology and its potential for the design of millimeter-wave ultra-high-speed and broadband monolithic-microwave integrated circuits.

ACKNOWLEDGMENT

The authors acknowledge the contributions of their colleagues at the Advanced Semiconductor Technology Center, and the support of S. Chaloux, G. Shahidi, B. Davari, D. Harame, and B. Meyerson.

REFERENCES

Noah Zamdmer received the Ph.D. degree in electrical engineering from the Massachusetts Institute of Technology, Cambridge, in 1999.

Since 1999, he has worked at the IBM Semiconductor Research and Development Center, Hopewell Junction, NY, in SOI technology development. His research interests include high-frequency device characterization and modeling, and the optimization of SOI CMOS technology for SOC applications.

Jean-Olivier Plouchart (M’96) was born in Paris, France in 1966. He received the M.S. and the Ph.D. (Hon.) degrees in electrical engineering from Paris VI University, France, in 1988 and 1994, respectively. During his masters work, he spent ten months working at Alcatel Telspace on the design of MESFET GaAs MMICs for satellite telecommunications.

From 1989 to 1990, he was a Scientist Consultant at the ETCA as part of his military service. From 1990 to 1994, he was with the French Telecom Laboratory (CNET), as a Ph.D. student, working to develop the GaAs HBT technological process and to design HBT MMICs for DCS1800 wireless and high bit rate optical communications. In 1994, he joined the University of Michigan as a Research Fellow, where he designed high-speed circuits using a 100-GHz InP HBT process. In 1996, he joined the IBM T. J. Watson Research Center as a Research Scientist, where his work involved the design of SiGe BiCMOS and CMOS RFIC circuits for wireless LAN applications. In 2000, he led a team working on low-power high-performance SOI SoC technology, and pioneered the design of millimeter wave SOI CMOS in standard microprocessor technology. His research interests include solid-state technologies, the design and optimization of high-speed circuits, the integration of RF transceivers with microprocessors for SoC applications, and the design automation of SoC design. Currently, he manages the development of high-speed design and technology benchmarking at the IBM Microelectronics Semiconductor Research and Development Center. He holds two patents, and has authored or coauthored over 45 publications.

Dr. Plouchart was a coauthor of the paper that won the Best Student Paper Award at the 2002 IEEE Radio Frequency Integrated Circuit Conference.

Jonghe Kim (S’98–M’01) was born in Incheon, Korea, in 1961. He received the Ph.D. degree in electrical engineering from the University of Minnesota, Minneapolis, in 2001.

He was with Samsung Electronics R&D Center at both Yongin, Korea, and Santa Clara, CA, from 1986 to 1995, where he worked as RF Engineer Manager to develop transceiver systems of analog and digital cellular phones. He completed and participated as a RF team leader on many projects, including AMPS, NMT-900, TDMA, and CDMA cellular phones. He was a Research Assistant with the Analog Design Group of the University of Minnesota from 1997 to 2001. In 2001, he joined IBM Semiconductor Research and Development Center, Hopewell Junction, NY. His research interests include RF and low-power SOI CMOS integrated circuits and systems, semiconductor passive devices, RF SoC, and CMOS integrated transceivers.

Dr. Kim won first place in the 2000 SRC Copper Design Challenge through the project entitled “RF Front-End Design with Copper Passive Components.”

Melanie Sherony received the B.S. degree from Northwestern University, Evanston, IL, in 1990, and the S.M. and Ph.D. degrees in electrical engineering from the Massachusetts Institute of Technology, Cambridge, in 1993 and 1997, respectively.

While at MIT, she specialized in extreme submicron silicon-on-insulator (SOI) MOSFET design. She joined the Semiconductor Research and Development Center, IBM Microelectronics Division, Hopewell Junction, NY, in 1998, and initially worked on the development and device design for the high-performance 0.18-μm SOI CMOS technology. She is currently working on the development of SOI CMOS technology for low-power, RF, and foundry applications.

Jean-Olivier Plouchart was a Scientist Consultant at the ETCA as part of his military service. From 1990 to 1994, he was with the French Telecom Laboratory (CNET), as a Ph.D. student, working to develop the GaAs HBT technological process and to design HBT MMICs for DCS1800 wireless and high bit rate optical communications. In 1994, he joined the University of Michigan as a Research Fellow, where he designed high-speed circuits using a 100-GHz InP HBT process. In 1996, he joined the IBM T. J. Watson Research Center as a Research Scientist, where his work involved the design of SiGe BiCMOS and CMOS RFIC circuits for wireless LAN applications. In 2000, he led a team working on low-power high-performance SOI SoC technology, and pioneered the design of millimeter wave SOI CMOS in standard microprocessor technology. His research interests include solid-state technologies, the design and optimization of high-speed circuits, the integration of RF transceivers with microprocessors for SoC applications, and the design automation of SoC design. Currently, he manages the development of high-speed design and technology benchmarking at the IBM Microelectronics Semiconductor Research and Development Center. He holds two patents, and has authored or coauthored over 45 publications.

Dr. Plouchart was a coauthor of the paper that won the Best Student Paper Award at the 2002 IEEE Radio Frequency Integrated Circuit Conference.

Jonghe Kim (S’98–M’01) was born in Incheon, Korea, in 1961. He received the Ph.D. degree in electrical engineering from the University of Minnesota, Minneapolis, in 2001.

He was with Samsung Electronics R&D Center at both Yongin, Korea, and Santa Clara, CA, from 1986 to 1995, where he worked as RF Engineer Manager to develop transceiver systems of analog and digital cellular phones. He completed and participated as a RF team leader on many projects, including AMPS, NMT-900, TDMA, and CDMA cellular phones. He was a Research Assistant with the Analog Design Group of the University of Minnesota from 1997 to 2001. In 2001, he joined IBM Semiconductor Research and Development Center, Hopewell Junction, NY. His research interests include RF and low-power SOI CMOS integrated circuits and systems, semiconductor passive devices, RF SoC, and CMOS integrated transceivers.

Dr. Kim won first place in the 2000 SRC Copper Design Challenge through the project entitled “RF Front-End Design with Copper Passive Components.”

Liang-Hung Lu was born in Taipei, Taiwan, R.O.C., in 1968. He received the B.S. and M.S. degrees in electronics engineering from National Chiao-Tung University in 1991 and 1993, respectively. He received the Ph.D. degree in electrical engineering from the University of Michigan, Ann Arbor, in 2001. During his graduate study, he was involved in SiGe HBT technology and monolithic microwave integrated circuit (MMIC) applications.

He joined IBM Semiconductor Research and Development Center (SRDC), Hopewell Junction, NY, in 2001, where he was engaged in low-power and RF project for silicon-on-insulator (SOI) technology. In the August of 2002, he joined the faculty of the Department of Electrical Engineering at National Taiwan University as an Assistant Professor. His research interests include design and fabrication of MMIC for wireless communication, CMOS/BiCMOS RF and mixed-signal integrated circuit design.

Yue Tan (S’97–M’01) was born in China. He received the B.S. and M.S. degrees in electronic engineering from Southeast University, China, in 1991 and 1995, respectively. He received the Ph.D. degree in electrical and electronic engineering from Southeast University, China, in 1999.

He joined Hong Kong University of Science and Technology (HKUST) as Research Fellow in 1999. He designed and implemented a fully integrated SOI RF power amplifier for 900-MHz wireless applications. He also developed a high-voltage (100-V) CMOS technology for Plasma Display Panel application in a 0.6-μm technology. In 2001, he joined IBM Microelectronics Division. He began work on SOI RF devices and integrated circuits design at the IBM Semiconductor Research and Development Center, Hopewell Junction, New York, as a means of supporting early SOI device, technology, and electronic design automation learning for foundry business and product in 130-nm and 90-nm technology nodes. He has applied his interest in advanced technique for physical verification, deep submicron electronic design automation integration, and semiconductor device modeling in support of IBM’s leading-edge SOI foundry products. He has invented subcircuit-based layout extraction methodology and layout versus schematic (LVS) comparison algorithm to increase the confidence level of integrated circuit layout physical verification. Currently, he is taking SRAM cell ownership responsibility for IBM SOI technology. He is developing the highest performance SRAM cell for a given area with robust manufacturing process window and optimized for product yield and minimum array operating voltage in 90-nm and 65-nm technology nodes. Focusing predominantly on SOI device, circuit design, electronic design automation, and technology integration, he has authored or coauthored more than 20 papers in technical journals and referred conferences in these areas. He holds two pending U.S. patents.
Robert A. Groves (M’94) received the B.S.E.E degree from the State University of New York in 1996. He joined IBM Corporation, Microelectronics Division, East Fishkill, NY, in 1989 as a Development Lab Technician. Since 1994, he has worked on SiGe technology development, with an emphasis on high frequency modeling and characterization. His current interest is in microwave passive devices on silicon (interconnect, capacitors, and inductors), particularly integrated spiral inductor optimization and modeling.

Robert Trzcinski joined IBM, Burlington, VT, in 1972, working on the CMOS memory line. In the 1990s, he worked at the Poughkeepsie Laser Laboratory, then transferred to Lockheed Martin to work at IBM’s Advanced Lithography Facility, developing an EXCIMER laser steam-clean method for X-ray masks, as well as working on the Helios Synchrotron X-ray source and related systems. He returned to IBM to work on direct-write e-beam systems being developed for Nikon. Currently, he is working with SOI AMS and RF circuit characterization team at IBM, Fishkill, NY.

Mohamed Talbi received B.S. and M.S. degrees in industrial engineering and operations research from the University of Massachusetts, Amherst, in 1980 and 1984, respectively. He joined IBM, Hopewell Junction, NY, in 1984 and initially worked on electronic packaging, modeling and design. He is currently working on design kit development for SOI technologies, mask data preparation, and design services.

Asit Ray received the Ph.D. degree from the University of Southern California, Los Angeles, in 1977. He then joined the Exploratory Silicon Technology Department, IBM T. J. Watson Research Center, Yorktown Heights, NY, as a research staff member. During 1977–1990, he worked on low-temperature silicon processing in the area of plasma oxidation, plasma nitridation, high-pressure oxidation, nitridation, annealing of process-induced damage, and multilevel metal interconnection. From 1990 to 1992, he was on assignment at Sematech, Austin, TX, to work on rapid thermal processing tool and process development for 0.35-μm CMOS technology. He then joined the Advanced Logic and SRAM Technology development group of the IBM Semiconductor Research and Development Center, Hopewell Junction, NY, and was involved in the process development and integration of 0.35–0.12-μm CMOS technology. During the past three years he has been working on the development of low-power digital and RF applications using SOI CMOS technology. He has published more than 60 papers on silicon technology and presented numerous papers at international conferences.

Asit Ray received the Ph.D. degree from the University of Southern California, Los Angeles, in 1977. He then joined the Exploratory Silicon Technology Department, IBM T. J. Watson Research Center, Yorktown Heights, NY, as a research staff member. During 1977–1990, he worked on low-temperature silicon processing in the area of plasma oxidation, plasma nitridation, high-pressure oxidation, nitridation, annealing of process-induced damage, and multilevel metal interconnection. From 1990 to 1992, he was on assignment at Sematech, Austin, TX, to work on rapid thermal processing tool and process development for 0.35-μm CMOS technology. He then joined the Advanced Logic and SRAM Technology development group of the IBM Semiconductor Research and Development Center, Hopewell Junction, NY, and was involved in the process development and integration of 0.35–0.12-μm CMOS technology. During the past three years he has been working on the development of low-power digital and RF applications using SOI CMOS technology. He has published more than 60 papers on silicon technology and presented numerous papers at international conferences.

Lawrence F. Wagner (M’81) received the B.S. degree in physics from the Massachusetts Institute of Technology, Cambridge, in 1960, and the M.S. and Ph.D. degrees in electrical engineering from Stanford University, Stanford, CA, in 1969 and 1981, respectively. From 1961 to 1968, he worked for the U.S. Army Electronics Command, Fort Monmouth, NJ, investigating the design of micropower integrated logic circuits. His thesis research at Stanford included the first direct observation of silicon surface states using ultraviolet photoelectron spectroscopy. He completed a postdoctoral assignment at the University of Hawaii, Honolulu, where he observed and modeled the angular dependence of X-ray photoelectrons. Since 1981, he has been with the IBM Microelectronics Division, Hopewell Junction, NY, where his current position is Senior Technical Staff Member. His work at IBM has specialized in device modeling, concentrating on bipolar transistors, and Schottky diodes from 1981 to 1994, and on SOI MOS transistors from 1994 to the present. His current work includes developing SOI models for foundry and ASIC customers, and the measurement and modeling of SOI transistors for high-frequency operation. He holds five patents, and has authored or coauthored over 75 publications. Dr. Wagner is a member of the American Physical Society. He received IBM’s Outstanding Innovation Award for Semiconductor Device Modeling and Design in 1989.