By case studies, we have shown that system-level specifications can be mapped systematically to an optimized block diagram (case study “saw-tooth generator”). Furthermore, we could systematically and in a quantitative way evaluate the effect of oversampling to a system (case study “converter”). In another case study, we could evaluate the influence of a different partitioning (analog/SC/digital) to the design. The proposed methods can be seen as a prototype of a first tool for “analog/digital codesign” because they permit the system-level optimization of mixed-signal applications across the border between analog and digital domains.

REFERENCES

ENPCO: An Entropy-Based Partition-Codec Algorithm to Reduce Power for Bipartition-Codec Architecture in Pipelined Circuits

Shan-Jang Ruan, Edwin Naroska, Yen-Jen Chang, Feipei Lai, and Uwe Schwiegelshohn

Abstract—This brief proposes a new algorithm to synthesize low power bipartition-codec architecture for pipelined circuits. The bipartition-codec architecture has been introduced as an effective power reduction technique for circuit design. The entropy-based partition-codec (ENPCO) algorithm extends this approach as it optimizes for both: power and area. It uses entropy as a criterion to balance between power and area. The ENPCO algorithm is composed of two phases: first, it clusters the output vectors with high occurrence into a group, moving all remaining output vectors into another group. The first group will be encoded in order to save power. Secondly, based on circuit entropy, output patterns are moved between both groups in order to balance power consumption and area overhead. A number of Microelectronic Center of North Carolina (MCNC) benchmarks were used to verify the effectiveness of our algorithm. Results demonstrate that ENPCO algorithm can achieve low power with less area overhead than the single-phase algorithm introduced in [1].

Index Terms—Entropy, low power.

I. INTRODUCTION

In modern VLSI chip designs, power dissipation has become one of the major concerns (besides area and speed) due to the widespread demand for high performance computing in portable systems. Because of its high throughput, pipelining is popularly used in such systems. Unfortunately, the registers that are inserted into the circuit to separate pipeline stages are a major source of power consumption [2]. Therefore, increasing system clock frequency without sacrificing low power properties requires advanced pipelined synthesis algorithms.

In today’s VLSI circuits, the dominant fraction of average power dissipation is attributed to dynamic power dissipation caused by the switching activity of gate outputs [3]. As a result, many power optimization techniques that try to reduce switching activities to the minimum at various design levels have been proposed in recent years ([4], [5], [3] are good surveys to previous research efforts). For logic level designs, two major low power techniques, precomputation and gated-clock are often applied. Alidina et al. first proposed a precomputation-based scheme, which selectively disables the inputs of a sequential logic circuit to achieve low power consumption [6]. Another precomputation scheme is circuit partitioning. The idea of partition for low power is that in behavioral descriptions of hardware, a small set of computation often accounts for most of the computational complexity as well as power dissipation. The authors of [7] extend CCC’s (Common-Case Computation) during the design process and simplify the CCC’s in a stand alone manner to achieve power saving.

Manuscript received December 26, 2001; revised April 19, 2002 and June 15, 2002.
S.-J. Ruan is with the Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan, R.O.C. (email: sjt@orchid.ee.ntu.edu.tw).
E. Naroska and U. Schwiegelshohn are with the Computer Institute Engineering, University of Dortmund, Dortmund 44221, Germany (email: edwin@ds-e-technik.uni-dortmund.de; uwe@ds-e-technik.uni-dortmund.de).
Y.-J. Chang is with the Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan, R.O.C. (email: ychang@bull.csie.ntu.edu.tw).
F. Lai is with the Department of Electrical Engineering and Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan, R.O.C. (email: flai@cc.ee.ntu.edu.tw).
Digital Object Identifier 10.1109/TVLSI.2002.808422

1063-8210/02$17.00 © 2002 IEEE
In 1999, Ruan et al. proposed a bipartition-codec architecture which treats each output value of a combinational circuit as one state of a FSM, so that the most transitive states will be extracted to build a small subcircuit [1]. Additionally, Choi and Hwang partition a combinational circuit into multiple subcircuits through the recursive application of Shannon expansion with respect to the selected input variables [8]. While these approaches could successfully reduce power consumption they also incur some area overhead. Moreover the relationship between the number of partitions and power/area is still unclear. Ruan et al. showed that partitioning circuits with more than two-ways often does not save power due to the overhead of duplicated input latches and output multiplexors [9]. Benini et al. proposed a gated-clock approach to build low power FSMs [10]. The approach eliminates unnecessary glitches in the idle states of FSMs. In [11] and [12] a FSM is decomposed into a number of coupled submachines so that most of the time state transitions of high probability will be confined to smaller submachines.

Additionally, power estimation plays a significant role in low power design as it helps rating different design alternatives with respect to power consumption. Power estimation is especially important at higher level of abstraction in order to provide synthesis algorithms with information that can be used to optimize for low power. Various approaches for power estimation have been developed. Taking entropy-based estimation as example, it is an interesting solution to the problem of how to predict the area and power dissipated by a digital system for which an input/output description is available [13]-[16].

In this paper, we propose an algorithm called entropy-based partition-codec algorithm (ENPCO) which optimizes pipelined circuits for low power while incurring only small area overhead in most cases. Power saving is achieved by generating a bipartition-codec architecture from the original circuit. The ENPCO algorithm includes two phases: given a circuit described by PLA format, we first bipartition the PLA into two sub-PLAs. The first sub-PLA only includes patterns that frequently occur on the outputs (note that we assume that each input pattern have equal probability) while the other PLA is built from the remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns. In the second phase, encoding is applied on the highly active sub-PLA and entropy is used to estimate the area of the entire remaining patterns.

We illustrate our synthesis flow in Fig. 1. Bipartition is the first phase of ENPCO algorithm while Fine Tune and the remaining processes belong to second phase. In order to verify the results, our synthesis flow from the PLA specification to the transistor-level implementation and an accurate switch-level power estimation tool, EPIC powermill1, is used to estimate power consumption. The experimental results prove that ENPCO algorithm can save power consumption for most circuits of the MCNC benchmarks.

The major difference between bipartition-codec and precomputation architectures is that precomputation only disables some of the input pins to reduce switching activity of the combinational logic. However, the remaining input signals may also incur redundant switching activity in the entire combinational logic. Furthermore, precomputation does not account for the power dissipation of pipeline registers. Conversely, bipartition-codec architecture separates the combinational logic which ensures they will not influence each other. Moreover we take power dissipation of pipeline registers into account by applying the codec structure. This helps reducing power dissipation significantly.

The paper is organized as follows. Section II presents the basic models of power dissipation and area complexity of CMOS circuits. Section III describes the bipartition-codec architecture which is proposed in [1]. In Section IV, we formulate the problem and propose the ENPCO algorithm. Section V demonstrates the experimental results to verify and prove the feasibility of our algorithm. We conclude in Section VI.

II. PRELIMINARIES

In this section, we first describe the power dissipation model of CMOS circuits [4]. This leads to a relationship between power consumption and switching activity. Moreover, we describe an area estimation model based upon the input/output entropies [16].

A. Power Dissipation Model

In a digital CMOS circuit, the major source of power dissipation is switching activity so that the power consumption in digital CMOS circuits can be simply written as follows [4]:

\[P = 0.5 \times C_L \times V_{dd}^2 \times E(sw) \times f_{clk}, \]

where \(C_L \) is the loading capacitance, \(V_{dd} \) denotes the supply voltage, and \(f_{clk} \) is the clock frequency. These three parameters are primarily determined by the fabrication technology and circuit layout considerations such as transistor sizing. \(E(sw) \) is the average transition number per clock cycle (referred to as the transition density), which can be determined by evaluating the logic function and the statistical properties of the input vectors. Obviously, (1) relates the dominant power dissipation to the switching activity of a CMOS circuit.

B. Area Estimation Model

For efficiency consideration, we adopt the area complexity model proposed by Cheng et al. [16]:

\[L(n, d, X) = (1 - d) \cdot k \cdot 2^n \cdot H(X) \]

where \(n \) is the number of input pins, \(d \) is the fraction of don't care terms in the truth table of the circuit, \(k \) is constant, and \(H(X) \) is the entropy of the outputs. Let \(P \) be a set of probabilities \(P = \{ p(s_1), p(s_2), \ldots, p(s_{2m}) \} \) where \(p(s_i) \) is a probability

[^1]: EPIC Powermill was developed by DPIC Design Technology, Inc.
function \(p : S \rightarrow \{0, 1\} \) which returns the frequency of an output pattern \(s_i \). For example,

\[
p(s_i) = \frac{x_i}{2^n}
\]

where \(x_i \) is the number of appearances of pattern \(s_i \) at the outputs of the circuit if all possible \(2^n \) input patterns are assigned to the circuit exactly once (note that some \(x_i \) may be 0). Then, the entropy \(H(X) \) is defined as follows:

\[
H(X) = \sum_{i=1}^{2^m} p_i \cdot \log_2 \frac{1}{p_i}
\]

(3)

where \(m \) is the number of output pins of the circuit. Note that entropy is intuitively related to switching activity. For example, a \(n \)-input signal that rarely toggles suggests that the word-level values are relatively stagnant and many values will probably not appear. This skew occurrence probability gives a low entropy measure. Conversely, if signals are highly active, all word-line values are very likely to appear with the same probability. This maximizes entropy of the signals [18].

III. BIPARTITION-CODEC ARCHITECTURE

A pipeline stage can be represented by a combinational logic block separated by distinct registers as shown in Fig. 2. After bipartitioning a circuit, we apply the encoding technique introduced in [19] to the highly active subcircuit (Group1). To reduce power consumption of the registers of the highly active subcircuit (Group1), we replace it with a codec structure that consists of an encoder and a decoder (see Fig. 4). Note that the encoder not only encodes the outputs with minimal Hamming distance but also generates a SEL signal to choose the data path to be activated. In detail, the bipartition-codec architecture operates as follows. The input IN feeds into the Encoder and the registers of Group2. Signal SEL and the encoding outputs become valid before the rising edge of the global clock CLK. If \(SEL = 1 \), the gated clock \(CLK_1 \) will be activated and \(CLK_2 \) be stopped when the next rising edge of \(CLK \) arrives. At this moment the encoding output passes through register \(R_1 \) and propagates into the decoder. Note that the input IN will not propagate through \(R_2 \). Hence the Decoder is selected to compute the outputs while \(Group2 \) is idle.

Note that the presence of the low-enabled latch is needed for a correct behavior, because SEL may have glitches that must not propagate to the AND gate when \(CLK \) is high. The high-enabled latch memorizes the SEL function during a period of the global clock so that the multiplexer can select a correct output. The two latches work as a master-slave flip-flop. The interested reader may refer to [1] for further analysis of the architecture.

Note that the performance of the bipartition-codec architecture depends on the selection of output vectors that are assigned to Group1 (encoder/decoder). Unfortunately, for \(n \) different output patterns there are \(\binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n - 2 \) possible bipartitioning configurations. As a result, testing all configurations becomes computational expensive for large \(n \).

IV. ENPCO ALGORITHM

A. Problem Formulation

The total area estimation model is

\[
\text{Total Area} = \text{area}_{E} + \text{area}_{D} + \text{area}_{G2} + \text{overhead}
\]

\[
= L_E(n_E, d_E, X_E) + L_D(n_D, d_D, X_D)
+ L_{G2}(n_{G2}, d_{G2}, X_{G2}) + \text{overhead}
\]

\[
= L_E(n, d_E, X_E) + L_D(n, d_D, X_D)
+ L_{G2}(n, d_{G2}, X_{G2}) + \text{overhead}
\]

(4)

where \(\text{area}_{E}, \text{area}_{D} \) and \(\text{area}_{G2} \) represent the area of Encoder, Decoder and Group2 after being synthesized by SIS, respectively. The last term \(\text{overhead} \) consists of latches, logic gates, registers and multiplexers shown in Fig. 4. Note that we replaced \(n_E \) and \(n_{G2} \) with \(n \) because the numbers of input pins for Encoder and Group2 are the same as the number of input pins of the original circuit.

For our optimization approach we use a slightly simplified version of (4) to estimate area consumption of the bipartition codec architecture by neglecting the \(\text{overhead} \) term, which is a constant throughout the optimization approach:

\[
\text{Total Area}' = L_E(n, d_E, X_E) + L_D(n, d_D, X_D)
+ L_{G2}(n, d_{G2}, X_{G2})
\]

\[
= k \cdot 2^n ((1 - d_E)H(X_E) + (1 - d_{G2})H(X_{G2})) + k \cdot 2^n d_DH(X_D).
\]

(5)

B. Two Phases ENPCO Algorithm

The input of the algorithm is the set of different output patterns \(S = \{ s_1, s_2, \ldots, s_n \} \) of the circuit (note that here only pattern that actually appear at least once on the outputs are in \(S \)). Its output is a set of output pattern \(Q \subset S \) that are assigned to the encoder/decoder part of the bipartition architecture.
The algorithm is divided into two phases. In the first phase we select a set of candidates \(C \subseteq \mathcal{S} \) which might be moved to the encoder/decoder part of the architecture. These candidates are selected by their frequency of appearance \(p(s_i) \) on the outputs of the circuit. The motivation behind this approach is to assign a few highly active output pattern to the encoder/decoder section of the bipartition circuit in order to keep the small (with respect to area) part of the architecture active most of the time while the bigger part is mostly idle.

The second phase selects from the set of candidates \(C \subseteq \mathcal{S} \) that are finally assigned to the encoder/decoder part.

Phase 1: Fig. 5 shows the algorithm used for Phase 1. In order to select a “promising” set of candidates for the second phase of our algorithm, \(C \) is determined by two main rules. First, all patterns that have a probability above the average value \(1/q \) are added to candidate set \(C \). If the sum of probabilities of all patterns (\(prob \)) in \(C \) is less than 1/2 then further pattern are added (in decreasing probability order) until 1/2 is reached.

Phase 2: After determining the candidate set \(C \), the next step is to select a subset of elements from \(C \) that will be assigned to the encoder/decoder section of our architecture. However, our selection does not only focus on reducing power but also on reducing the area required to implement the entire architecture. Hence, our goal is to find a nonempty set \(Q \subseteq C \) that if assigned to the encoder/decoder part of our architecture results in a minimal total area complexity. Note that an exhaustive search is impractical as \(O(2^{2|Q|}) \) permutations must be analyzed. Hence, we use a greedy approach to find an acceptable solution in \(O(|Q|^2) \).

During runtime of the algorithm area consumption of various configurations are tested and compared as follows: based on a chosen pattern set \(V \subseteq C \), the algorithm introduced in [19] is executed to find a good binary representation of \(V \). The encoding results are then used to estimate area of the total circuit using the following Equation:

\[
\text{Total Area}''(S, V) = 2^n \left((1 - d(E(V))) H(X_E(V)) + (1 - d(G(V))) \right) + 2^n d(V)(1 - d(D(V))) H(X_D(V)).
\]

(6)

It is derived from (5) by removing constant \(k \). \(V \) is the set of output states that shall be associated with the encoder/decoder part while \(S \) is the entire output set. Note that values \(d_E(V), X_E(V), n_D(V), d_D(V) \) and \(X_D(V) \) depend on the results obtained from encoding.

The actual algorithm is shown in Fig. 6. It takes the candidate set \(C \) as a parameter and returns the final set \(Q \) to be assigned to the encoder/decoder part. The algorithm uses two internal sets: \(T \) is a temporary set of pattern while \(Q \) holds the best pattern set found so far.

Fig. 6. Algorithm to select final set \(Q \) from \(C \) (phase 2).
configurations are tested in each iteration. Hence, the overall complexity of phase 2 is \(O(|C|^2)\).

V. SIMULATION ENVIRONMENT AND RESULTS

A. Simulation Environment

The ENPCO algorithm has been implemented in C++ on a SUN Sparc station and several MCNC benchmark circuits were used to test it. The rugged script of SIS [20] was used to synthesize Encoder, Decoder, and Group2. Power dissipation estimation was done by EPIC PowerMill. We used 5 V supply voltage, and a clock frequency of 20 MHz.

In our experiments, we selected the primitive standard cells which were provided by CCL \(0.8 \mu m\) technology. From the data book of CCL 0.8 \(\mu m\) standard cell library, we extracted the propagation delays and driving capabilities of every standard cell. These numbers were used to construct a technology file in genlib format to be used by SIS. Further, the standard cells in SPICE subcircuit format were converted into the EPIC format using EPIC utility gentech. So, as the final synthesized results are in EPIC format, EPIC PowerMill could be used to estimate power consumption of the pipelined circuits. The overall flow is shown in Fig. 7.

The MCNC benchmarks that are given in two-level PLAs are bipartitioned and encoded into three PLAs: Encoder, Decoder, and Group2. A synthesis script, script.rugged of SIS was used to optimize each PLA. Then the library binding program map of SIS was used to generate a corresponding gate-level file in BLIF format (Berkeley Logic Interchange Format). A BLIF to SPICE format converter was used to convert the BLIF gate-level description to SPICE transistor-level according to a layout-extracted netlist file. Finally, the utility spice2e of EPIC converted the pipeline circuits from SPICE format to EPIC format.

B. Experimental Results

We assumed uniform probability distribution for the primary inputs of the pipelined circuit, but this assumption is not restrictive. For example, in a pipelined circuit the input probability distribution can be computed from the output probability of the previous stage. The registers of the output part are unchanged in our architectures. Hence, we do not consider the effect of these registers on area and power dissipation. The area unit and power unit are 128 \(\mu m^2\) and \(\mu W\) in our experiments.

The area and power dissipation of the original, single-phase and ENPCO algorithms are tabulated in Table I. The “Original” column shows the number of inputs (#I), outputs (#O), area \(A_r\) and power dissipation \(P_w\) of each circuit. The “single-phase algorithm” and “ENPCO algorithm” columns show area \(A_r\), power \(P_w\), percentage of area increase \(A_I\%\) computed as

\[
100\left(\frac{A_{r\text{ ENPCO}} - A_{r\text {original}}}{A_{r\text {original}}}\right),
\]

and power reduction \(P_{R}\%\) computed as

\[
\frac{100(P_{w\text {original}} - P_{w\text {single-phase}})}{P_{w\text {original}}}.
\]

The column \(DN\) shows the number of output vectors that were assigned to the codec structure.

The ENPCO algorithm is capable of reducing the area of combinatorial parts (i.e., Encoder, Decoder, and Group2). However, area overhead (i.e., two latches, two AND gates and multiplexers as well as the additional registers) may become significant if the original circuit is small. Further, these additional components also consume power. As a result, for small circuits, the area overhead introduced by our architecture may become significant while saving only little or no power.

In Figs. 8 and 9, we show the comparison of power reduction and area increase. In Fig. 8, the curve labeled Power increase is obtained by subtracting ENPCO algorithm’s PR\% from single-phase algorithm’s PR\%. Similar, Area reduction of the Fig. 9 is obtained by subtracting ENPCO algorithm’s AR\% from single-phase algorithm’s AR\%. As
shown in Figs. 8 and 9, ENPCO algorithm has almost the same power saving results compared to the single-phase algorithm but requires less area overhead. Fig. 10 shows the AI% and PR% values obtained by ENPCO algorithm for comparison.

Table II compares the average area and power reduction of previous schemes with our proposed algorithm. The precomputation column represents the circuits implemented by precomputation-based method [6]. The Choi’s algorithm and Choi’s area constraint columns represent the circuits implemented by Choi’s algorithm and Choi’s algorithm with area constraint, respectively [8]. The data shown in these three columns are cited from [17]. The Single-phase column represents the circuits implemented by a single-phase algorithm introduced in [1]. Our proposed algorithm is shown in column ENPCO. Obviously, ENPCO algorithm obtained more power reduction and less area overhead than Choi’s algorithm with area constraint. Moreover, ENPCO algorithm achieves almost the same power saving as the single-phase algorithm, however, it adds significant less area overhead. Although precomputation and Choi’s area constraint algorithms can achieve power reduction and reduce the area marginally, their power reductions are limited. In summary, our proposed architecture obtained significant power saving with less area overhead compared to previously published techniques.

Our approach reduces power consumption from the circuits with few high-probability output vectors. We prove the bipartition-codec circuit consumes less power than the original one. The power dissipation of the input registers is also reduced for the sake of less switching of input variables. Further, the codec architecture not only reduces the switching activity of the input registers but also the internal switching activity of Decoder.

However, there are circuits that are not suitable for bipartition-codec methodology. Consider the benchmark circuits in Table I. We observed that for some circuits such as sao2 misex1 and cmb, the ENPCO algorithm reduces power up to 75.2%. However, for other circuits such as rd73, it provides only limited power reduction. Moreover, the area overhead introduced by the architecture is significant. It seems that these circuits are not suitable for this approach.
Hence, if we find a method to detect these kind of circuits in advance we could avoid applying our technique on these cases saving synthesis runtime. Table II displays the output patterns for a subset of the benchmark circuits. While for models sao2 and cmb few output patterns are activated by many different input patterns, model rd73 shows a more balanced output pattern probability. Hence, for models sao2 and cmb good power reduction results could be achieved while our approach fails for rd73. For example, our approach is promising for models where most input patterns are mapped to a small set of output patterns. For other circuits the power reduction that can be achieved is often small while the area overhead is significant. Hence, for these kind of circuits it is better to avoid applying our algorithm.

In order to detect these circuits, we introduce an extra check in the proposed algorithm. Consider a set of q output pattern $W = \{s_1, s_2, \ldots, s_q\}$ where each of these pattern appear at least once on the output. Then, $Y = \{y_1, y_2, \ldots, y_q\}$ is the frequency vector of W, where y_i is the number of appearances of pattern s_i at the output. Y meets the following two conditions $(n$ is the number of input pins):

$$y_i \in \{1, 2, \ldots, (2^n - q + 1)\}$$ \hspace{1cm} (7)

and

$$\sum y_i = 2^n.$$ \hspace{1cm} (8)

Hence, the mean value of Y is $Y^m = \frac{2^n}{q}$. In order to rate a circuit we calculated the normalized deviation (C.V.)

$$C.V. = \sqrt{\frac{\frac{1}{n} \sum (y_i - 2^n q)^2}{S_{\text{max}}}}.$$ \hspace{1cm} (9)

where the numerator is the standard deviation of Y and S_{max} is the maximum standard deviation value among all possible sets Y that meet (7) and (8). Hence, C.V. holds $0 \leq C.V. \leq 1$. The deviation of Y is maximal if all except one y_i are set to 1. E.g., y_1 may be set to $y_1 = 2^n - q + 1$ and all remaining y_i are set to $y_i = 1$. As a result, S_{max} is

$$S_{\text{max}} = \sqrt{\frac{q - 1}{q} \left(1 - \frac{2^n}{q}\right)^2 + \frac{1}{q} \left(2^n - q + 1 - \frac{2^n}{q}\right)^2}.$$ \hspace{1cm} (10)

In the following, we prove that (10) is actually the maximum value.

Proof: For the proof it is sufficient to show that $S'(Y') = \sum_{i=1}^q (y_i - 2^n q)^2$ is maximum for $Y' = (\hat{y}, 1, 1, \ldots, 1)$, where $\hat{y} = 2^n - q + 1$. Subtracting a value δ with $0 < \delta \leq \hat{y} - 1$ from y_1 and adding it to y_2 creates a new vector Y'':

$$Y'' = (\hat{y} - \delta, 1 + \delta, 1, \ldots, 1).$$

Note that δ must not be greater than $\hat{y} - 1$ to ensure that all elements of Y'' are greater or equal to 1. Calculating the difference $S'(Y') - S'(Y'')$ gives

$$S'(Y') - S'(Y'') = 2\delta(\hat{y} - 1 - \delta) \geq 0.$$ \hspace{1cm} (11)

Hence, $S'(Y')$ is greater or equal to $S'(Y'')$. For example, decreasing y_1 and increasing y_2 by the same value does not increase S'. Based on the previous analysis we also conclude that decreasing y_2 and increasing y_3 of Y'' by δ ($0 < \delta \leq \delta$) also does not increase S'. Consequently, $S'(Y''') \leq S'(Y')$ is valid for each vector

$$Y''' = (\hat{y} - \delta_1, 1 + \delta_1 - \delta_2, 1 + \delta_2 - \delta_3, \ldots, 1 + \delta_{q-1}),$$

with $\hat{y} - 1 \geq \delta_1 \geq \delta_2 \geq \cdots \geq \delta_{q-1} \geq 0$. As for each valid Y an appropriate δ_i-set can be determined such that $Y = Y''''$, S' as well as the standard deviation are maximal for $Y = Y''$.

In order to characterize a circuit we evaluate (9). If C.V. is large (suppose > 0.8), it implies most of the inputs are mapped to some few outputs. Hence the bipartition-codec methodology is capable of reducing power consumption significantly. If C.V. is small (say ≤ 0.8), the occurrence of each output pattern is uniformly distributed. This implies that our bipartition-codec methodology will probably achieve...
only little power saving but will introduce a significant area overhead. The threshold value (here: 0.8) can be changed to match different needs and applications. For example, if low power is the dominant consideration disregarding area overhead, we can use a smaller threshold value. If area and power reduction are both our optimization targets, we can use a larger threshold value to filter out the unsuitable circuits.

Scaling Problem: In [2], the authors indicate that according to the simulation results, the total power consumption of a design is similar among different technologies. From a theoretical viewpoint, a scaling factor \(SC \) defines the technology change in a certain physical parameter (e.g., gate oxide thickness) from one technology generation to another [21]. For instance, changing the channel length from 0.35 to 0.25 \(\mu m \) gives \(SC \) the value 0.71.

The ideal scaling for deep-submicrometer power dissipation and area is \(SC^{2} \). For the computation of AI% and PR% in our experiments, they are the same in different technologies. Therefore, the results we obtained and the conclusion we draw in this paper apply to other technology levels as well.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed an effective ENPCO algorithm to minimize power dissipation and area overhead for pipelined circuits. We bipartition the circuits into two groups: one group contains patterns that occur often at the outputs which implies higher activity, the other group contains the remaining output patterns. We apply a codec structure to the highly active group for power saving. Then we estimate the area of combinational blocks (Encoder, Decoder and \(G_{out}^{b} \)) by using an entropy based approach. Finally we choose the configuration with minimal estimated area overhead as our final synthesized result. We compared the single-phase and ENPCO algorithms by power and area. The experiments show that the ENPCO algorithm achieves a good trade-off between area overhead and power dissipation. The power dissipation benefit of the bipartition-codec architecture synthesized by our ENPCO algorithm comes from the following three reasons:

1) the lengths of the registers, which are used to store the output of each stage, are reduced after encoding;
2) the Hamming distance of the register values is smaller than before;
3) the circuit switching activity of the combinational block is reduced.

The circuit will benefit from our architecture if a small number of output vectors dominate most of the circuit behavior (e.g., see models \(sao2 \) and \(cmb \) in Table III). Nevertheless, circuits that are characterized by a uniform output vector probability distribution are not suited to our architecture. For example, the output pattern distribution of \(ad73 \) is more uniform than those of the others models (see Table III). As a result, power reduction is less significant than that of \(sao2 \) and \(cmb \).

Compared to precomputation architecture, precomputation only disables the partial input pins for reducing the switching activity of combinational logic. Hence, the remainder input signals may also incur redundant switching activity in the entire combinational logic. Furthermore, precomputation does not account for the power dissipation of pipeline registers. Conversely, bipartition-codec architecture not only separates the combinational logic to ensure that they will not influence each other but also reduces power dissipation of the pipeline registers by applying a codec structure.