Effects of Tb content on the microstructure and magnetic properties of Co$_{85-x}$Tb$_x$Dy$_{15}$ films

P.C. Kuoa,*, C.T. Liea, S.C. Chenb, C.Y. Choua, T.H. Wua, Y.C. Chena

aInstitute of Materials Science and Engineering, and Center for Nanostorage Research, National Taiwan University, Taipei 106, Taiwan

bDepartment of Mechanical Engineering, De Lin Institute of Technology, Taipei 236, Taiwan

Abstract

The Co$_{85-x}$Tb$_x$Dy$_{15}$ films ($x = 0$–24 at%) were prepared at room temperature by DC magnetron sputtering. Transmission electron microscopy analysis indicated that all the films were amorphous. The magnetization measurement revealed that increasing Tb content would reduce the saturation magnetization M_s of the film but the out-plane coercivity $H_{c\perp}$ was increased. The M_s and $H_{c\perp}$ values of the Co$_{85}$Dy$_{15}$ film ($x = 0$) were about 640 emu/cm3 and 50 Oe, respectively. However, the M_s and $H_{c\perp}$ values of the Co$_{61}$Tb$_{24}$Dy$_{15}$ film ($x = 24$ at%) were about 20 emu/cm3 and 10×10^3 Oe, respectively.

*Corresponding author. Tel.: +886-2-2364-8881; fax: +886-2-2363-4562.

E-mail address: pekuo@ccms.ntu.edu.tw, pekuo@ntu.edu.tw (P.C. Kuo).

0304-8853/$-$see front matter © 2003 Elsevier B.V. All rights reserved.
Co subnetwork is antiparallel to that of Dy subnetwork. Net magnetization of Co85Dy15 alloy is parallel to that of Co subnetwork. The decrease of M_s of the Co85/C0X/TbX/Dy15 film with increasing Tb content is due to the fact that the direction of net moment of the Tb atoms is opposite to that of Co atoms. The variation of H_c with Tb content is small but the H_c value is increased rapidly with increasing Tb content as $x > 11$. The H_c value increases from about 1.5 kOe for $x = 11$ to about 10 kOe for $x = 24$. Magnetic easy direction of the film is changed from isotropy to perpendicular gradually as the Tb content is increased, because Tb atoms have large out-plane magnetic anisotropy constant $K_{u\perp}$ [5].

Fig. 3 shows the variations of out-plane squareness S_\perp and in-plane squareness S_\parallel with Tb content of the Co85$_{\ldots}$Tb$_x$Dy$_{15}$ film, where $S_\perp = M_\perp/M_s$ and $S_\parallel = S_\parallel/M_s$. M_\perp and M_\parallel are the out-plane and in-plane remanent magnetization, respectively. The S_\perp of CoTb-Dy film is increased with increasing Tb content. S_\perp increases from 0.07 to about 1 as x increases from 0 to 24. This is due to the fact that Tb has large $K_{u\perp}$. The S_\perp was larger than 0.85 as $x > 14$ at%. The curve of S_\parallel versus Tb content is like the peak behavior. The peak of S_\parallel occurs at $x \approx 11$ that is about 0.45. When Tb content is more than 18 at%, S_\parallel is increased with increasing Tb content. As $x > 11$ at%, S_\perp of the Co85$_{\ldots}$Tb$_x$Dy$_{15}$ film is larger than S_\parallel. The curve of S_\parallel versus Tb content is like the peak behavior. The peak of S_\parallel occurs at $x_B \approx 11$ that is about 0.45. When Tb content is more than 18 at%, S_\parallel is increased with increasing Tb content. As $x > 11$ at%, S_\perp of the Co85$_{\ldots}$Tb$_x$Dy$_{15}$ film is larger than S_\parallel. The curve of S_\parallel versus Tb content is like the peak behavior. The peak of S_\parallel occurs at $x_B \approx 11$ that is about 0.45. When Tb content is more than 18 at%, S_\parallel is increased with increasing Tb content. As $x > 11$ at%, S_\perp of the Co85$_ {\ldots}$Tb$_x$Dy$_{15}$ film is larger than S_\parallel.

We have investigated the effects of Tb content on the magnetic properties and microstructure of the Co85$_{\ldots}$Tb$_x$Dy$_{15}$ films ($x = 0–24$ at%). TEM analysis indicated that all the films were amorphous. The magnetization measurement revealed that the addition of Tb would reduce the M_s value of the Co85Dy$_{15}$ film but H_c was increased. S_\perp was about 1 and $H_c \perp \approx 10$ kOe as the Tb content increased to 24 at%.

This work was supported by the National Science Council and Ministry of Economic Affairs of R.O.C. through Grant No. NSC 90-2216-E 002-036 and 91-EC-17-A-08-S1-0006, respectively.

References