Asynchronous group mutual exclusion in ring networks

K.-P. Wu and Y.-J. Joung

Abstract: In group mutual exclusion solutions for shared-memory models and complete message-passing networks have been proposed. These solutions, however, cannot be straightforwardly and efficiently converted to ring networks where each process can only communicate directly with its two neighbouring processes. As rings are also a popular network topology, the paper is focused on ring networks. An efficient and highly concurrent distributed algorithm for the problem is presented.

1 Introduction

The design issues for imposing mutual exclusion on different groups of processes in accessing a resource while exploring concurrency among processes of the same group in sharing the resource have recently been modelled by Joung [1] as the congenial talking philosophers (CTP): a set of \(N \) philosophers \(p_0, p_1, \ldots, p_{N-1} \) spend their time thinking alone and talking in a forum. Initially, all philosophers are thinking. From time to time, when a philosopher is tired of thinking, it wishes to attend a forum of its choice. Given that there is only one meeting room, a philosopher attempting to enter the meeting room to attend a forum can succeed only if the meeting room is empty (and in this case the philosopher starts the forum), or some philosopher interested in the same forum is already in the meeting room (and in this case the philosopher joins this ongoing forum). We assume that when a philosopher has attended a forum, it spends an unpredictable but finite amount of time in the forum. After a philosopher leaves a forum (i.e. exits the meeting room), it returns to thinking. The problem is to design an algorithm for the philosophers satisfying the following requirements:

mutual exclusion: if a philosopher is in a forum, then no other philosopher can be in a different forum simultaneously;

bounded delay: a philosopher attempting to attend a forum will eventually succeed;

concurrent entering: if some philosophers are interested in a forum and no philosopher is interested in a different forum, then the philosophers interested in the same forum can concurrently enter the meeting room to hold the forum.

As discussed in [2], ‘concurrent entering’ is used to prevent an unnecessary synchronisation on philosophers in attending a forum when no other philosopher is interested in a different forum. For example, in a token-ring system we can easily construct a solution as follows: when a philosopher \(p_i \) interested in a forum \(X \) obtains the token, it initiates \(X \) and sends out an invite message along the ring to inform other philosophers interested in \(X \) to attend \(X \). To close the forum, a clean-up message is issued by \(p_i \) to make sure no philosopher is still in \(X \) before \(p_i \) releases the token. The use of a single token easily guarantees mutual exclusion and bounded delay, but it also makes concurrent entering impossible. This is because if two philosophers wish to attend \(X \) simultaneously, then one of them must enter the meeting room sequentially after the other.

Solutions to CTP for shared-memory models and complete message-passing networks have been proposed [1, 2]. They, however, cannot be straightforwardly and efficiently converted to ring networks where each philosopher can only communicate directly with its two neighbouring philosophers. As rings are also a popular network topology, in this paper we focus the problem on ring networks (Fig. 1) where the \(N \) philosophers \(p_0, p_1, \ldots, p_{N-1} \) are connected via a ring network so that each philosopher \(p_i \) can only send messages directly to its immediate successor \(p_{i+1} \). (Unless stated, otherwise, additions and subtractions on indices of philosophers are to be interpreted modulo \(N \).) We shall assume that philosophers are distinguished by their unique IDs, and that every
message will eventually be delivered to its destination. However, we do not require FIFO delivery of messages. As we shall see in Section 4, assuming FIFO delivery results in a fewer ‘context switches’ complexity in our algorithm. With a slight modification, however, the FIFO assumption can be lifted without affecting the complexity, and so makes the algorithms suitable for more general models.

2 Straightforward solution

A straightforward solution to CTP, which we shall refer to as CTP-RingI, can be easily devised as follows. Each philosopher \(p_i \) is in one of the following three states: thinking, meaning that it is not interested in any forum; waiting, meaning that it is waiting for a forum; and talking, meaning that it is in a forum (Fig. 2). \(p_i \) maintains a variable \(SN \) recording the maximum sequence number seen by the philosopher. The variable will be maintained similar to Lamport’s logical clock [3]. That is, \(SN \) is initialised to 0 and, whenever \(p_i \) learns of a sequence number larger than its own \(SN \), it advances its \(SN \) to that number. Furthermore, \(p_i \) increments \(SN \) by 1 when it wishes to attend a forum.

Initially, \(p_i \) is in state thinking. When it wishes to attend a forum \(X \), it enters state waiting, increments its \(SN \) by 1, and sends a request message \(Req(i, sn) \) to its successor \(p_{i+1} \), where \(sn \) is the new value of \(p_i \)’s \(SN \). Philosopher \(p_i \) remains in state waiting until its request \(Req(i, sn) \), \(X \) is returned. Then, \(p_i \) enters the meeting room to attend \(X \). After finishing the forum, \(p_i \) returns to state thinking.

When \(p_{i+1} \) receives a request message \(Req(j, sn) \), \(X \) from \(p_i \), it either forwards the request to its successor \(p_{i+2} \), or detains the request in its message queue; the decision depends on \(p_{i+1} \)’s state. \(p_{i+1} \) forwards the request if one of the following conditions is satisfied: (1) it is in state thinking; (2) it is also interested in \(X \); or (3) it is interested in a different forum and has a priority lower than \(p_i \). A philosopher’s priority is assigned as follows: the priority is set to \((j, sn) \) when the philosopher issues a request \(Req(j, sn) \), \(X \), and is reset to a minimal value \((j, \infty) \) when it finishes \(X \). A priority \((j, sn) \) is higher than \((k, sn_k) \), denoted by \((j, sn_j) > (k, sn_k) \), if, and only if, \(sn_j < sn_k \), or \(sn_j = sn_k \) and \(j < k \). (Thus, a philosopher’s priority in state thinking is always lower than that of a philosopher interested in a forum.)

On the other hand, \(p_{i+1} \) detains the request if none of the above three conditions is satisfied; that is, \(p_{i+1} \) is interested in a different forum \(Y \) and has a priority higher than \((j, sn_j) \cdot p_{i+1} \) detains the request until it has finished \(Y \). Then, \(p_{i+1} \) forwards the request (and all other requests it has held) to \(p_{i+2} \).

It is easy to see that CTP-RingI requires \(N \) messages per entry to the meeting room. The algorithm also satisfies the three requirements of CTP. For mutual exclusion, observe that by the way sequence numbers are maintained, if a philosopher \(p_i \) requests a forum after it has received \(Req(i, sn) \), \(X \) issued by \(p_j \), then \(p_j \)’s priority must be lower than \(p_i \)’s. So, when \(p_j \)’s request circulates to \(p_i \), if the request is not for \(X \) then it will be detained by \(p_j \) until \(p_i \) has finished \(X \). Therefore, \(p_j \) cannot attend a different forum while \(p_i \) is in \(X \). Moreover, given that priorities are unique, when two philosophers request different fora concurrently, the request issued by the low-priority philosopher will be detained by the high-priority one until the latter has finished a forum. So, the two philosophers cannot be in different fora simultaneously. Because neither logically dependent requests nor concurrent requests can violate mutual exclusion, mutual exclusion is guaranteed.

For bounded delay, observe that a philosopher releases all detained messages to its successor when it finishes a forum. Given that a philosopher spends only a finite time in a forum and that every message is eventually delivered, a philosopher issuing a request will eventually receive the request and, so, will eventually attend a forum.

For concurrent entering, observe that philosophers will not detain one another’s request if they are interested in the same forum. Given that philosophers not interested in a forum will not detain any request, if some philosophers are interested in a forum and no philosopher is interested in a different forum, then the philosophers can enter the meeting room concurrently.

2.1 Simulation results

In the simulation, we have set up a system of \(N \) philosophers and \(m \) fora. Each time a philosopher wishes to attend a forum, it randomly chooses one of the \(m \) fora to attend, and the choice follows a uniform distribution. The time a philosopher stays in states thinking and talking follows an exponential distribution with means \(\mu_{\text{thinking}} \) and \(\mu_{\text{talking}} \) respectively. The message transmission time also follows an exponential distribution with a mean \(\mu_{\text{link-delay}} \). We measure the following values:

- The average time a philosopher spends in waiting for a forum: that is, the average waiting time.
- The average number of ‘context switches’ a philosopher has to wait per request, where a context switch (or forum switch) occurs when the next entry to the meeting room is for a forum different from the current one. The greater the number of context switches the longer the waiting time.
- The average size of a round of \(X \); where a round of \(X \) is a maximal set of consecutive entries to the meeting room that are all to attend \(X \).
- The average capacity; that is, on an average, the maximum number of philosophers that can be in the meeting room simultaneously per round.
- The average number of messages required per entry to the meeting room.
- Throughput; that is, the average number of entries to the meeting room per second.

The simulation program is written in Java using JDK V1.02 [4]. Tables 1–8 summarise some of our simulation results. For comparison, we have also measured the behaviour of the algorithm when philosophers use the meeting room in a mutually exclusive style. This is done by designating one unique forum to each philosopher. In the tables we use \(m = N^* \) to denote this scenario. We have also set up the case \(m = 1 \) where maximum concurrency should be allowed as no two requests will ever conflict. The average message transmission time \(\mu_{\text{link-delay}} \) is set to two different values, one is negligible compared to \(\mu_{\text{thinking}} \) and

![Fig. 2 State transition diagram of a philosopher in CTP-RingI](image-url)
while the other is not. It is not difficult to see that the settings represent a very high contention situation to the meeting room. From Tables 1 and 5 we can see that CTP-Ring1 provides virtually no concurrency. For example, when \(m = 3 \), it is likely that one third of the pending requests are targeted at the same forum. However, the simulation results indicate that the behaviour of the system is only slightly better than the case \(m = 30^* \) where the philosophers use the meeting room in a mutually exclusive style.

![State transition diagram of a philosopher](image)

Fig. 3 New state transition diagram of a philosopher

Table 1: Simulation results for algorithm CTP-Ring1

<table>
<thead>
<tr>
<th>Average</th>
<th>(m = 1)</th>
<th>(m = 3)</th>
<th>(m = 5)</th>
<th>(m = 10)</th>
<th>(m = 20)</th>
<th>(m = 30^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting time (ms)</td>
<td>20.12</td>
<td>6108.46</td>
<td>6816.79</td>
<td>7292.95</td>
<td>7605.84</td>
<td>7873.7</td>
</tr>
<tr>
<td>Context switches</td>
<td>0</td>
<td>19.08</td>
<td>23.00</td>
<td>25.91</td>
<td>27.41</td>
<td>28.86</td>
</tr>
<tr>
<td>Round size</td>
<td>NA</td>
<td>1.51</td>
<td>1.25</td>
<td>1.11</td>
<td>1.05</td>
<td>1.00</td>
</tr>
<tr>
<td>Capacity</td>
<td>30</td>
<td>1.49</td>
<td>1.24</td>
<td>1.11</td>
<td>1.05</td>
<td>1.00</td>
</tr>
<tr>
<td>Messages / entry</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Throughput (entry/s)</td>
<td>92.13</td>
<td>4.66</td>
<td>4.19</td>
<td>3.95</td>
<td>3.79</td>
<td>3.67</td>
</tr>
</tbody>
</table>

\(N = 30, \, \mu_{\text{thinking}} = 50 \text{ ms}, \, \mu_{\text{taking}} = 250 \text{ ms}, \, \mu_{\text{link delay}} = 2 \text{ ms} \)

Table 2: Simulation results for algorithm CTP-Ring2

<table>
<thead>
<tr>
<th>Average</th>
<th>(m = 1)</th>
<th>(m = 3)</th>
<th>(m = 5)</th>
<th>(m = 10)</th>
<th>(m = 20)</th>
<th>(m = 30^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting time (ms)</td>
<td>82.62</td>
<td>1635.33</td>
<td>2195.67</td>
<td>3225.78</td>
<td>4397.95</td>
<td>7973.73</td>
</tr>
<tr>
<td>Context switches</td>
<td>0</td>
<td>2.01</td>
<td>3.03</td>
<td>5.42</td>
<td>9.53</td>
<td>28.87</td>
</tr>
<tr>
<td>Round size</td>
<td>NA</td>
<td>14.27</td>
<td>9.47</td>
<td>5.29</td>
<td>3.01</td>
<td>1.00</td>
</tr>
<tr>
<td>Capacity</td>
<td>30</td>
<td>12.62</td>
<td>8.62</td>
<td>4.97</td>
<td>2.90</td>
<td>1.00</td>
</tr>
<tr>
<td>Message / entry</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Throughput (entry/s)</td>
<td>76.90</td>
<td>15.39</td>
<td>11.95</td>
<td>8.48</td>
<td>6.36</td>
<td>3.62</td>
</tr>
</tbody>
</table>

\(N = 30, \, \mu_{\text{thinking}} = 50 \text{ ms}, \, \mu_{\text{taking}} = 250 \text{ ms}, \, \mu_{\text{link delay}} = 2 \text{ ms} \)

Table 3: Simulation results for algorithm CTP-Ring3

<table>
<thead>
<tr>
<th>Average</th>
<th>(m = 1)</th>
<th>(m = 3)</th>
<th>(m = 5)</th>
<th>(m = 10)</th>
<th>(m = 20)</th>
<th>(m = 30^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting time (ms)</td>
<td>84.92</td>
<td>1538.9</td>
<td>2124.01</td>
<td>3227.53</td>
<td>4398.81</td>
<td>7899.85</td>
</tr>
<tr>
<td>Context switches</td>
<td>0</td>
<td>1.93</td>
<td>2.91</td>
<td>5.34</td>
<td>9.44</td>
<td>28.87</td>
</tr>
<tr>
<td>Round size</td>
<td>NA</td>
<td>14.64</td>
<td>9.75</td>
<td>5.37</td>
<td>3.05</td>
<td>1.00</td>
</tr>
<tr>
<td>Capacity</td>
<td>30</td>
<td>13.11</td>
<td>8.95</td>
<td>5.06</td>
<td>2.92</td>
<td>1.00</td>
</tr>
<tr>
<td>Messages / entry</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Throughput (entry/s)</td>
<td>76.66</td>
<td>16.06</td>
<td>12.22</td>
<td>8.46</td>
<td>6.38</td>
<td>3.65</td>
</tr>
</tbody>
</table>

\(N = 30, \, \mu_{\text{thinking}} = 50 \text{ ms}, \, \mu_{\text{taking}} = 250 \text{ ms}, \, \mu_{\text{link delay}} = 2 \text{ ms} \)

Table 4: Simulation results for algorithm CTP-Ring4

<table>
<thead>
<tr>
<th>Average</th>
<th>(m = 1)</th>
<th>(m = 3)</th>
<th>(m = 5)</th>
<th>(m = 10)</th>
<th>(m = 20)</th>
<th>(m = 30^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting time (ms)</td>
<td>85.36</td>
<td>1535.52</td>
<td>2084.81</td>
<td>3151.52</td>
<td>4404.95</td>
<td>7822.91</td>
</tr>
<tr>
<td>Context switches</td>
<td>0</td>
<td>1.95</td>
<td>2.93</td>
<td>5.32</td>
<td>9.51</td>
<td>28.87</td>
</tr>
<tr>
<td>Round size</td>
<td>NA</td>
<td>14.71</td>
<td>9.80</td>
<td>5.40</td>
<td>3.02</td>
<td>1.00</td>
</tr>
<tr>
<td>Capacity</td>
<td>30</td>
<td>13.27</td>
<td>9.04</td>
<td>5.08</td>
<td>2.91</td>
<td>1.00</td>
</tr>
<tr>
<td>Messages / entry</td>
<td>60</td>
<td>46.53</td>
<td>43.41</td>
<td>42.55</td>
<td>44.45</td>
<td>60</td>
</tr>
<tr>
<td>Throughput (entry/s)</td>
<td>76.30</td>
<td>16.23</td>
<td>12.51</td>
<td>8.66</td>
<td>6.36</td>
<td>3.69</td>
</tr>
</tbody>
</table>

\(N = 30, \, \mu_{\text{thinking}} = 50 \text{ ms}, \, \mu_{\text{taking}} = 250 \text{ ms}, \, \mu_{\text{link delay}} = 2 \text{ ms} \)
Table 5: Simulation results for algorithm CTP-Ring1

<table>
<thead>
<tr>
<th></th>
<th>(m = 1)</th>
<th>(m = 3)</th>
<th>(m = 5)</th>
<th>(m = 10)</th>
<th>(m = 20)</th>
<th>(m = 30^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting time (ms)</td>
<td>778.53</td>
<td>8699.99</td>
<td>10575.3</td>
<td>12305.5</td>
<td>13434</td>
<td>15827.8</td>
</tr>
<tr>
<td>Context switches</td>
<td>0</td>
<td>19.18</td>
<td>23.18</td>
<td>26.12</td>
<td>27.41</td>
<td>29.00</td>
</tr>
<tr>
<td>Round size</td>
<td>NA</td>
<td>1.50</td>
<td>1.25</td>
<td>1.11</td>
<td>1.06</td>
<td>1.00</td>
</tr>
<tr>
<td>Capacity</td>
<td>19</td>
<td>1.39</td>
<td>1.20</td>
<td>1.09</td>
<td>1.05</td>
<td>1.00</td>
</tr>
<tr>
<td>Messages / entry</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Throughput (entry/s)</td>
<td>27.64</td>
<td>3.33</td>
<td>2.76</td>
<td>2.38</td>
<td>2.18</td>
<td>1.86</td>
</tr>
</tbody>
</table>

\(N = 30, \mu_{\text{peaking}} = 50\) ms, \(\mu_{\text{sitting}} = 250\) ms, \(\mu_{\text{link_delay}} = 20\) ms

Table 6: Simulation results for algorithm CTP-Ring2

<table>
<thead>
<tr>
<th></th>
<th>(m = 1)</th>
<th>(m = 3)</th>
<th>(m = 5)</th>
<th>(m = 10)</th>
<th>(m = 20)</th>
<th>(m = 30^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting time (ms)</td>
<td>1659.17</td>
<td>3766.88</td>
<td>4694.26</td>
<td>6172.01</td>
<td>8184.44</td>
<td>15815.3</td>
</tr>
<tr>
<td>Context switches</td>
<td>0</td>
<td>1.82</td>
<td>2.86</td>
<td>5.27</td>
<td>9.36</td>
<td>28.99</td>
</tr>
<tr>
<td>Round size</td>
<td>NA</td>
<td>15.22</td>
<td>9.75</td>
<td>5.35</td>
<td>3.04</td>
<td>1.00</td>
</tr>
<tr>
<td>Capacity</td>
<td>17</td>
<td>6.59</td>
<td>5.09</td>
<td>3.39</td>
<td>2.28</td>
<td>1.00</td>
</tr>
<tr>
<td>Messages / entry</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Throughput (entry/s)</td>
<td>15.26</td>
<td>7.35</td>
<td>5.99</td>
<td>4.63</td>
<td>3.53</td>
<td>1.86</td>
</tr>
</tbody>
</table>

\(N = 30, \mu_{\text{peaking}} = 50\) ms, \(\mu_{\text{sitting}} = 250\) ms, \(\mu_{\text{link_delay}} = 20\) ms

Table 7: Simulation results for algorithm CTP-Ring3

<table>
<thead>
<tr>
<th></th>
<th>(m = 1)</th>
<th>(m = 3)</th>
<th>(m = 5)</th>
<th>(m = 10)</th>
<th>(m = 20)</th>
<th>(m = 30^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting time (ms)</td>
<td>1657.47</td>
<td>3345.44</td>
<td>4252.13</td>
<td>5736.37</td>
<td>7481.06</td>
<td>15400</td>
</tr>
<tr>
<td>Context switches</td>
<td>0</td>
<td>1.71</td>
<td>2.75</td>
<td>5.08</td>
<td>9.22</td>
<td>28.99</td>
</tr>
<tr>
<td>Round size</td>
<td>NA</td>
<td>16.43</td>
<td>10.21</td>
<td>5.56</td>
<td>3.09</td>
<td>1.00</td>
</tr>
<tr>
<td>Capacity</td>
<td>17</td>
<td>7.39</td>
<td>5.51</td>
<td>3.62</td>
<td>2.36</td>
<td>1.00</td>
</tr>
<tr>
<td>Messages / entry</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Throughput (entry/s)</td>
<td>15.26</td>
<td>8.21</td>
<td>6.57</td>
<td>4.96</td>
<td>3.85</td>
<td>1.91</td>
</tr>
</tbody>
</table>

\(N = 30, \mu_{\text{peaking}} = 50\) ms, \(\mu_{\text{sitting}} = 250\) ms, \(\mu_{\text{link_delay}} = 20\) ms

Table 8: Simulation results for algorithm CTP-Ring4

<table>
<thead>
<tr>
<th></th>
<th>(m = 1)</th>
<th>(m = 3)</th>
<th>(m = 5)</th>
<th>(m = 10)</th>
<th>(m = 20)</th>
<th>(m = 30^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting time (ms)</td>
<td>1657.47</td>
<td>2781.95</td>
<td>3459.63</td>
<td>4655.31</td>
<td>6257.89</td>
<td>15675.9</td>
</tr>
<tr>
<td>Context switches</td>
<td>0</td>
<td>1.73</td>
<td>2.79</td>
<td>5.17</td>
<td>9.29</td>
<td>28.99</td>
</tr>
<tr>
<td>Round size</td>
<td>NA</td>
<td>16.32</td>
<td>10.14</td>
<td>5.48</td>
<td>3.07</td>
<td>1.00</td>
</tr>
<tr>
<td>Capacity</td>
<td>17</td>
<td>7.71</td>
<td>5.86</td>
<td>3.74</td>
<td>2.39</td>
<td>1.00</td>
</tr>
<tr>
<td>Messages / entry</td>
<td>60</td>
<td>45.65</td>
<td>43.26</td>
<td>42.41</td>
<td>44.16</td>
<td>60</td>
</tr>
<tr>
<td>Throughput (entry/s)</td>
<td>15.26</td>
<td>9.71</td>
<td>7.96</td>
<td>6.04</td>
<td>4.57</td>
<td>1.88</td>
</tr>
</tbody>
</table>

\(N = 30, \mu_{\text{peaking}} = 50\) ms, \(\mu_{\text{sitting}} = 250\) ms, \(\mu_{\text{link_delay}} = 20\) ms

3 Improved algorithm

The low concurrency of CTP-Ring1 is due to the fact that philosophers’ requests are granted according to their priorities: a low-priority philosopher must enter the meeting room after a high-priority one. As a result, if two philosophers \(p_i\) and \(p_j\) are interested in the same forum but a third philosopher \(p_k\) interested in a different forum has obtained a priority between them, then \(p_i\) and \(p_j\) cannot attend the same forum concurrently because the low-priority philosopher \(p_j\) must wait for \(p_k\) to finish a forum before it can attend a forum. To resolve this, we let \(p_i\) issue another message along the ring to ‘capture’ \(p_j\) (and other philosophers that are also interested in the same forum) so that the captured philosophers can attend the forum concurrently with the captor.

To do so, we introduce a new state checking for the philosophers (Fig. 3). As before, a philosopher’s priority is set to \((i, sn)\) when it issues a request \(\text{Req}(i, sn, X)\) and \((i, sn)\) is also said to be the priority of the request. However, the priority may be “upgraded” (but at most once) before the philosopher attends \(X\). The priority is reset to a minimal
value \((i, \infty)\) when the philosopher returns to state thinking.

Like CTP-Ring1, when a philosopher \(p_i\) wishes to attend a forum \(X\), it enters state waiting, increments its SN by 1, and sends a request \(Req(i, sn, X)\) to its successor \(p_{i+1}\), where \(sn\) is the new value of \(p_i\)'s SN. Another philosopher \(p_j\) in the ring, upon receiving the request, forwards the request if it is also interested in \(X\) or has a priority lower than \((i, sn)\); otherwise, \(p_j\) contains the request in its message queue until it has finished a forum. When the request is returned to \(p_i\), \(p_i\) enters state checking to issue a confirmation message of the form \(Conf\) \((i, sn, X)\) to its successor \(p_{i+1}\). The purpose of the message is twofold: to capture philosophers that are waiting for \(X\), and to make sure that no philosopher is still in a different forum, \(p_i\) attends \(X\) when the message is returned to \(p_i\).

When \(p_j\) receives \(Conf\) \((i, sn, X)\), where \(j \neq i\), it processes the message similarly to request messages: \(p_j\) forwards the message if it is also interested in \(X\) or has a priority lower than \((i, sn)\); otherwise, \(p_j\) contains the message. Note that all messages (requests and confirmations) detained by a philosopher are released when the philosopher exits a forum. In addition, if \(p_j\) is also interested in \(X\), is in state waiting, and has a priority lower than \((i, sn)\), then \(p_j\) is captured by \(p_i\). In this case, \(p_j\) assumes \(p_i\)'s priority and also enters state checking to issue a confirmation message of the form \(Conf\) \((j, (i, sn), X)\) along the ring. \(p_j\)'s request message circulating somewhere in the ring then becomes obsolete. Unlike \(p_j\)'s confirmation message, \(p_j\)'s confirmation message serves only one purpose: to make sure that no philosopher is still in a different forum. Therefore, a philosopher receiving \(p_j\)'s confirmation message processes the message similarly to the other form of confirmation messages, except that the new form of confirmation message cannot capture the receiving philosophers. This prevents \(p_i\) from capturing \(p_j\) after \(p_i\) has attended \(X\) and has made a new request to re-attend \(X\), thereby preventing \(p_i\) and \(p_j\) from capturing each other repeatedly while blocking another forum indefinitely.

\(p_i\) enters state talking to attend \(X\) when its confirmation message is returned. After \(p_i\) has finished the forum, it forwards all the messages it has detained to \(p_{i+1}\) and returns to state thinking. Note that because some low-priority philosophers may have been captured by \(p_i\) to concurrently attend \(X\), after \(p_i\) has left \(X\), some philosophers may still be in \(X\) while another \(p_j\) with a higher priority than the captured philosophers is waiting for a different forum \(Y\). Because \(p_i\) will receive all messages it has detained when it leaves \(X\), \(p_j\) may have received its own request after \(p_i\) has left \(X\) but before all its captured philosophers have left \(X\). Therefore, \(p_i\) cannot immediately enter state talking to attend \(Y\) when it receives its own request. Instead, it must initiate a confirmation message to make sure that all \(p_i\)'s captured philosophers have left \(X\). Similarly, any philosopher captured by \(p_i\) must also initiate a confirmation message along the ring before attending a forum.

We refer to the new algorithm as CTP-Ring2, and its complete code is given in Fig. 4. The algorithm is represented by a CSP-like repetitive command of the form [4]:

\[
\{g_1 \rightarrow s_1 \land g_2 \rightarrow s_2 \land \ldots \land g_k \rightarrow s_k\}
\]

The variables local to each \(p_i\) are given as follows:

- **state**: the state of \(p_i\). It is initialised to thinking.
- **SN**: the sequence number maintained by \(p_i\). It is initialised to 0.
- **target**: the forum \(p_i\) wishes to attend, or \(\perp\) otherwise. It is initialised to \(\perp\).
- **priority**: \(p_i\)'s priority. It is initialised to a minimal value \((i, \infty)\).
- **message_queue**: the queue of messages detained by \(p_i\). It is initialised to empty.

4 Correctness of CTP-Ring2 and its fine tuning

We now prove the correctness of CTP-Ring2. Recall from the algorithm that for a philosopher \(p_i\) to attend \(X\), \(p_i\) has to issue a request for \(X\) and then a confirmation message. We say that the request is granted when the confirmation message has returned to \(p_i\). \(p_i\) is waiting for \(X\) after it has issued a request for \(X\) but before the request has been granted. \(p_i\) is interested in \(X\) if it has issued a request for \(X\) but has not yet completed \(X\).

Moreover, recall that a philosopher \(p_i\) attends forum \(X\) only if:

1. it is in state checking and receives its own message \(Conf\) \((i, sn, X)\), or
2. it is in state checking and receives its own message \(Conf\) \((i, j, sn, X)\).

In the first case, we say that \(p_i\) enters checking as a captor, whereas in the latter case \(p_i\) enters checking as a captive.

Theorem 4.1: The algorithm guarantees mutual exclusion.

Proof: Let \(p_i\) be the philosopher with the highest priority, and assume that \(p_i\) has issued \(Req(i, sn, X)\). Observe that no other \(p_i\) interested in a different forum can be in the meeting room because \(p_i\)'s request cannot pass through \(p_i\) until \(p_i\) has left \(X\). Moreover, \(p_i\)'s request will return to \(p_i\) because no philosopher can detain the request. Similarly, when \(p_i\) subsequently issues a confirmation \(Conf\) \((i, sn, X)\) the message can also circulate along the ring and return to \(p_i\), thereby allowing \(p_i\) to attend \(X\). Every \(p_k\) that has been captured by \(p_i\) while the message is circulating then assumes \(p_i\)'s priority. Since any \(p_j\) that is interested in a different forum has its request detained by \(p_j\) while \(p_i\) must have not yet issued a confirmation message when \(p_j\) captures \(p_i\). So when \(p_i\)'s confirmation message arrives at \(p_k\), \(p_i\) has already assumed \(p_i\)'s priority and so will detain the message until \(p_k\) has left \(X\). Therefore, while \(p_i\) or any of its captives is in \(X\), no other \(p_i\) can attend a different forum.

Theorem 4.2: The algorithm guarantees bounded delay.

Proof: This follows from the fact that for every request \(Req(i, sn, X)\), there are at most a finite number of requests that can have a priority higher than \((i, sn)\), and that the request with the highest priority is eventually granted.

Theorem 4.3: The algorithm permits concurrent entering.

Proof: This follows from the fact that if some philosophers are interested in a forum \(X\) and no philosopher is interested in a different forum, then no philosopher can detain the requests for \(X\), and so the philosophers interested in \(X\) can concurrently enter the meeting room to hold \(X\).

It is clear that CTP-Ring2 requires \(2N\) messages per entry to the meeting room. Moreover, if messages need not be delivered in the order sent, then a philosopher may need to wait for \(\mathcal{O}(N^2)\) ‘context switches’ before entering the meeting room (CTP-Ring1 also has the same complexity). To see this, suppose that \(p_i\) has issued \(Req(i, sn, X)\). Then, while the request is in transit to, say, \(p_{i+1}\), another \(p_j\) could also have issued a request \(Req(j, sn', Y)\) with \(sn' < sn\) (and so \(p_j\)'s priority is higher than \(p_i\)'s). Since messages do not need to be delivered in the order sent, \(p_j\)'s request could have been returned to \(p_j\) while \(p_i\)'s message is still in transit.
\begin{verbatim}
1 *[wish to attend a forum of X →
2 SN := SN + 1;
3 target := X;
4 priority := (i, SN);
5 state := waiting;
6 send Req((i, SN), X) to p_{i+1};
7 □ receive Req((j, sn), Y) →
8 SN := max(SN, sn);
9 [i = j ∧ state = waiting ∧ priority = (j, sn) →
10 state := checking;
11 send Conf / Capt((i, sn), target) to p_{i+1};
12 □ i ≠ j ∧ target = Y ∧ priority < (j, sn) →
13 send Req((j, sn), Y) to p_{i+1};
14 □ i ≠ j ∧ target ≠ Y ∧ priority > (j, sn) →
15 add Req((j, sn), Y) to message_queue;
16 □ i = j ∧ (state ≠ waiting ∨ priority ≠ (j, sn)) →
17 skip;] /* p_i receives its own obsolete request */
18 □ receive Conf / Capt((j, sn), Y) →
19 [i = j → /* receive p_i’s own confirmation message */
20 state := talking;
21 attend a forum of target;
22 □ i ≠ j ∧ target ≠ Y ∧ priority > (j, sn) →
23 add Conf / Capt((j, sn), Y) to message_queue;
24 □ i ≠ j ∧ (target = Y ∧ priority < (j, sn)) →
25 send Conf / Capt((j, sn), Y) to p_{i+1};
26 [target = Y ∧ state = waiting ∧ priority < (j, sn) →
27 state := checking; /* captured by p_j */
28 priority := (j, sn); /* assume the captor’s priority */
29 send Conf((i, (j, sn), target) to p_{i+1};]
30 □ receive Conf((j, (k, sn), Y) →
31 [i = j → /* receive p_i’s own confirmation message */
32 state := talking;
33 attend a forum of target;
34 □ i ≠ j ∧ target ≠ Y ∧ priority > (k, sn) →
35 add Conf((j, (k, sn), Y) to message_queue;
36 □ i ≠ j ∧ (target = Y ∧ priority < (k, sn)) →
37 send Conf((j, (k, sn), Y) to p_{i+1};]
38 □ exit a forum of target →
39 state := thinking;
40 target := ⊥;
41 priority := (i, ∞); /* reset the priority to a minimal value */
42 for each msg ∈ message_queue do send msg to p_{i+1};
43 message_queue := ⊘;
44]
\end{verbatim}

Fig. 4 Algorithm CTP-Ring2 for philosopher \(p_i\).
p_i issues another request, it must have learned of p_i's sequence number sn, and so its next request must have a priority lower than (i, sn). Hence, the context-switch complexity will be $O(N)$.

Even if messages are not guaranteed to be delivered in FIFO order, we can still improve the context-switch complexity to $O(N)$ by slightly modifying the algorithm to let a philosopher p_i actively learn of another philosopher's sequence number via the messages circulating between them. To do so, request messages now have this form:

- $Req((i, sn), sn_{max}, X)$

where the extra sequence number sn_{max} carried by the request is the maximum sequence number of the philosophers through which the request has passed. Initially, sn_{max} equals p_i's SN when p_i issues the request (and note that sn is also equal to p_i's SN). Upon receiving the request, a philosopher p_j adjusts its own SN to be the maximum value of its current SN and sn_{max}. When p_j is to forward the request to its successor, it adjusts sn_{max} to be the maximum value of its current SN and sn_{max}. (Note that if the request is to be detained by p_j, then in between the time p_j receives the request and the time it releases the request, p_j's sequence number SN may have been adjusted a number of times.)

An extra sequence number is also added to confirmation messages so that they now have these two forms:

- $Conf/Capt((i, sn), sn_{max}, X)$;
- $Conf((j, sn), sn_{max}, X)$.

The extra parameter sn_{max} is initialised and used similarly to the new request messages.

We shall refer to this modified algorithm as CTP-Ring3. It is clear that the modification does not affect the mutual exclusion, bounded delay, and concurrent entering properties.

The simulation results for both CTP-Ring2 and CTP-Ring3 are also given in the tables. We can see that the performance of the system is improved significantly. For example, in Tables 2–3 when $m = 3$, the average context switches per request is approximately 2 for both CTP-Ring2 and CTP-Ring3, as opposed to 19.08 for CTP-Ring1. Moreover, on average, up to 12–13 philosophers can be in the meeting room simultaneously per round for CTP-Ring2 and CTP-Ring3, as opposed to 1.49 for CTP-Ring1.

Moreover, we have also conducted a simulation for CTP-Ring3 where request messages may be deleted before they return to their originators. Recall from the algorithm that after a philosopher p_i has issued a request, if another philosopher captures p_i before the request returns to p_i, then p_i will immediately issue a confirmation message (of the form Conf). So p_i's request becomes obsolete and can be deleted right away. So we can modify the algorithm such that if a philosopher p_j holding a request by p_i receives a confirmation message initiated by p_i, then p_j can delete p_i's request immediately. In addition, since messages are not guaranteed to be delivered in the order sent, it is also possible that p_i may receive a new request by p_j while it is holding an old request by p_i. For example, suppose p_i has sent out a request to p_j, but the request has not yet arrived at p_j. Subsequently, p_i is captured to send a confirmation message to p_j. Suppose further that the confirmation message reaches p_j and then returns to p_i before p_j's request arrives at p_j. After p_j has attended a forum it may issue a new request to p_j. If p_j receives the new request while it is holding p_j's old request, then obviously the old request can be deleted as well.

We refer to the modified algorithm as CTP-Ring4. On average, a request will travel about half of the ring before it is deleted. So the message complexity can be reduced to approximately $1.5N$. The simulation results for CTP-Ring4 are given in final Tables 4 and 8. Note that the message complexity remains $2N$ when $m = 1$. This is because in this case no request will be detained, and so it is not possible for a philosopher to receive a confirmation message initiated by p_i while holding p_i's request. On the other hand, when $m = N^*$, no philosopher will ever be captured and so the message complexity remains at $2N$.

5 Conclusions and future work

We have presented two distributed algorithms CTP-Ring1 and CTP-Ring2 (and its modifications CTP-Ring3 and CTP-Ring4) for CTP on a ring network where each philosopher can only communicate directly with its two neighbouring philosophers. Although CTP-Ring2 requires N more messages per entry to the meeting room, its dynamic performance is improved significantly over CTP-Ring1.

Due to the structure of rings, it is easy to see that an algorithm for CTP requires, in the worst case, at least N messages per entry to the meeting room. Thus, CTP-Ring1 achieves an optimal message complexity. Note that only one message is initiated by a philosopher requesting a forum; the ring structure renders the other $N - 1$ messages to be generated by the other philosophers for the request to be fully acknowledged. As we can see, the single message initiated by the requesting philosopher is not ‘enough’ to boost the system’s performance if philosophers request fora concurrently in such a way that neighbouring philosophers are interested in different fora (which, as can be seen, is likely to occur when contention for the meeting room is high). Therefore, in CTP-Ring2 and its modifications, a second message is initiated by the requesting philosopher to collect more information about the other philosophers’ states and possibly to capture philosophers having the same interest to enter the meeting room. However, this second message also increases the algorithm’s message complexity to $2N$. We conjecture that such a message is needed for the algorithm to overcome the poor performance exhibited by CTP-Ring1. A more formal treatment of this issue will be carried out in future work.

Finally, unlike Ricart and Agrawala’s message-passing algorithm for N-process mutual exclusion [6], the sequence numbers used by the algorithms presented in the paper cannot be bounded within the range x to $x + N - 1$. To see this, for example, consider CTP-Ring1. Suppose that p_i has initiated a request for X with a sequence number n. If no philosopher is interested in a different forum, then while p_i stays in the meeting room, another philosopher p_j could make an arbitrary number of entries to the meeting room to attend X (because no philosopher will detain p_j’s requests). This would then cause p_j’s SN to be adjusted to an arbitrary value greater than n possessed by p_i in its priority (i, n). Another direction for future work is therefore to attempt to bound the range of sequence numbers, or disprove such a possibility.

6 Acknowledgments

Research supported in part by the National Science Council, Taipei, Taiwan, under Grants NSC 85-2213-E-002-059 and NSC 86-2213-E-002-053. We thank the anonymous referees for useful comments on the paper.
7 References

4 Java applets, animating the algorithms in the paper: http://joung.im.ntu.edu.tw/congenial/
