formance, a noise and interference test set was used to measure BER (bit error ratio) against E_b/N_0 (bit energy/noise). During these measurements a constant signal level was maintained into the QPSK demodulator (~37dBm) as its performance was power dependent.

Results: Fig. 2a shows the RF spectrum applied to the laser transmitter (point A, Fig. 1), i.e. TV and 120Mbit/s QPSK data. Fig. 2b shows the received QPSK data channel prior to 60GHz up-conversion and radio transmission (point B, Fig. 1).

In Fig. 3, we plot the measured BER at different stages of the link. The back-to-back measurement was performed using the output of the first up-converter at 1.35GHz (point A, Fig. 1) and feeding it directly to the down-converter. There was a 1 dB penalty at 10^{-5} BER on the received QPSK signal at the output of the EAM (point B). Comparing this with the results obtained in [3], this penalty is thought to be due to the narrower bandwidth of the multiplexer in this experiment, resulting in some spectral shaping of the QPSK data. Residual signals from the adjacent TV channels were transmitted instead of data and these could be seen in Fig. 2a. For the uplink, data centred at 140MHz there was a minimal 0.25 dB power penalty as expected from [3]. The insertion loss of the RAP-MT link added a negligible penalty using the horn antenna, whereas the omnidirectional antenna led to a further 0.7 dB penalty at 10^{-5} BER. The latter penalty is believed to be due to multipath propagation in the laboratory. The presence of reflections was confirmed when the TV channels were transmitted instead of data and these could be received satisfactorily by the MT without using line of sight propagation paths. It is possible that this problem could be alleviated in future experiments by the use of a spread spectrum technique or by using adaptive compensation. BER measurements as low as 10^{-10} were observed after mm-wave transmission and a minimum of 10^{-8} was achieved in all cases. Additionally, no significant degradation of the TV signals received at the RAP could be observed on the TV monitor.

Conclusion: We have demonstrated bi-directional analogue data transmission at 120Mbit/s together with broadcast TV distribution using an EAM as a remote transmitter. The EAM electrical output was used to perform an indoor radio transmission at 60GHz using two types of antenna at the radio access point. BERs < 10^{-5} were observed. The mm-wave system has a novel and attractive strategy for the return path with a reduced amount of equipment at the RAP. Higher bandwidth EAMs could eliminate the need for a separate broadband photodiode by also detecting the 60GHz carrier, thus enabling the RAP to be further simplified. The configuration we have adopted shows a high degree of functionality and illustrates how a broadband mobile system might be integrated with an optical distribution network.

Acknowledgments: The authors thank P. Sully, J. Reed, M. Roberts, D. Wake and D. Marcenac.

References

BPSK modulator using VCCS and resonator without carrier signal and balance modulator

Juin-Hung Chen and Hen-Wai Tsao

Indexing terms: Phase shift keying, Voltage control, Modulators

A new binary-phase-shift-keying (BPSK) modulator is presented. It consists of a voltage control current source (VCCS), an LC resonator and a comparator and is named a switch-resonator BPSK modulator. This type of modulator is simpler than the traditional architectures. The experimental results are also reported: the bit rate and carrier frequency are 2.5Mbit/s and 5MHz, respectively.

Introduction: BPSK (binary-phase-shift-keying) modulation is widely used in communication systems. Balanced modulators, implemented by a double balanced Gilbert cell [1] or a diode array and transformer [2], are usually employed to perform BPSK modulation. Two novel methods, using a 180° phase shifter [3] and a phase splitter circuit [4], were proposed in the microwave band. In this Letter, a novel BPSK modulator, comprising a VCCS (voltage control current source), a resonator and a limiting amplifier, is presented. This modulator does not need a carrier signal, phase shifter or switch circuit. The only input signal is the modulating data bit stream. A short-circuited λ/4 line can be used to implement the resonator in the microwave band. This simple architecture is suitable for wireless communication.

\[i(t) \]

\[v(t) \]

\[v_1 \]

\[v_2 \]

\[v_3 \]

Fig. 1 Proposed configuration and experimental circuit

a Principle of this method
b Experimental circuit

\[\phi(t) = (A_0v_0)(\sin(\omega_0t) + n(t)) \]

Using a parallel LC resonant circuit and a comparator, the BPSK modulator is realized with a new structure, as shown in Fig. 1a. From circuit theory, if the excitation signal is a current step \(i(t) = A_0i_0 \), the voltage across the capacitor (or inductor) will be \(v(t) = \frac{A_0i_0}{C}(\sin(\omega_0t) + n(t)) \), where

1286 ELECTRONICS LETTERS 17th July 1997 Vol. 33 No. 15

© IEE 1997

Electronics Letters Online No. 19970857

L. Noël, L.D. Westbrook, D.G. Moodie and D. Neset (BT Laboratories, Martlesham Heath, Ipswich IP5 7RE, United Kingdom)
this result and the superposition theory, when the excitation signal is $i(t) = A\sin(\omega_d t - \theta)$, the output voltage will be

$$v(t) = A\sin(\omega_d t)u(t) - 2\sin\left(\frac{\omega_d}{\omega_0}(t - \frac{8\pi}{\omega_0})\right)u(t - \frac{8\pi}{\omega_0})$$

where $f_c = \frac{\omega_0}{2\pi}$ is the resonant frequency. This signal is also shown in Fig. 1a and we can see that it is identical to a BPSK signal. Therefore, we can employ this concept to design a BPSK modulator.

Fig. 1b depicts the novel BPSK modulator circuit. The VCCS, made by A, Q, and R, produces the NRZ current pulse stream and injects such a signal into the LC resonant circuit. If the resonant frequency f_c is an integral time of the bit rate, the resonator output voltage will be a BPSK signal. Since the quality factor Q of a general purpose reactive inductor is < 100 and the transistors output resistance is finite, the voltage will decay as time passes. Because BPSK modulation is one kind of exponential modulation, it is immune to system nonlinearity. Therefore, by adding a comparator or limiting amplifier following the resonator, we can compensate for the amplitude decay and still maintain the phase reversal. Passing such a signal through a bandpass filter can produce a filtered BPSK signal as in traditional modulation methods.

Conclusion: A novel BPSK modulator has been implemented by using a current source, an LC resonator and a comparator without an additional carrier signal, balanced modulator or phase shift circuit. This modulator is easy to assemble and its performance is acceptable. Except for the resonator, the VCCS and the limiting amplifier (for comparator) can be packaged in an IC and a high bit rate BPSK signal can be directly generated. It is suitable for generating direct sequence spread spectrum (DSSS) signals in wireless communication.

References

1 Harris Corporation: 'PC card wireless LAN handbook', 1996, pp.61-62
2 YOUNG, P.H. 'Electronics communication techniques' (Macmillan, New York, 1994)

Correlation model for shadow fading in land-mobile satellite systems

P. Taaghol and R. Tafazolli

Indexing terms: Satellite communication, Correlation methods

A simple yet accurate correlation model for shadow fading in land-mobile satellite systems, derived from L and S-band channel recordings, is proposed. The model has been developed for heavily wooded and suburban environments and covers elevation angles of 60-80°. It is demonstrated that in such environments, the effective correlation distance of shadowing is in the order of a few tens of meters.

Introduction: Recently, there has been a great effort in the characterisation of the land-mobile satellite propagation channels, enabling the system design and dimensioning of the proposed satellite personal communication networks (S-PCN). Such experiments are very costly and time consuming. Consequently, unlike the terrestrial case, a very limited number of such campaigns have been carried out. The first-order (time-invariant) statistics of the land-mobile satellite propagation channel based on experimental results have been extensively reported in [1] and [2], however, the second-order (time-variant) statistics are generally much less well-known; correlation statistics of shadow fading are one example, and have not yet been made available for satellite channels, restricting research [3] to only terrestrial values reported by [4]. An accurate correlation model for shadow fading in such environments is vital importance for both analytical and simulation based evaluation of any power control and handover scheme.

Channel recordings: The proposed shadow fading correlation model is based on the narrowband measurement campaign recordings at L-band (1.3GHz) and S-band (2.3GHz), carried out by CCSR of University of Surrey in spring 1992 [1]. The measurements were carried out in a number of environments, including heavily wooded areas, suburban and rural environments.

Fig. 3c is the eye diagram in the sum-of-phase channel and Fig. 3d is the eye diagram in the quadratic-channel. This Figure shows that the signal generated from the switch-resonator BPSK modulator is correct.