Anion-induced migration reaction of acetylide from iron to cyclopentadienyl in (cyclopentadienyl)irondicarbonyl(acetylene) complexes

Ling-Kang Liu,*a,b Kuo-Yang Chang,c and Yuh-Sheng Wen*a

a Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China
b Department of Chemistry, National Taiwan University, Taipei, Taiwan 10767, Republic of China

doi: 10.1021/ja00031a003

© 1998 American Chemical Society

The anion-induced migration reaction of acetylide in \((\eta^1-C_5H_5)\-Fe(CO)\(_2\)(C\(_5\)H\(_5\))\) was observed in a sequential treatment of lithium disopropylamide followed by an excess of MeI, giving a yellow compound \((\eta^1-C_5H_5)\-Fe(CO)\(_2\)(C\(_5\)H\(_5\))\). The NMR spectrum of this compound shows signals for \(\delta = 78.0\) ppm, which is consistent with the presence of the Fe-Cr bond. The synthesized compound is diamagnetic, and its molecular weight is consistent with the expected value.

The anion-induced migration reaction of acetylide from a metal atom to a neighboring cyclopentadienyl carbon atom has been known for about 20 years. Such a reaction is characterized by its intramolecular nature and is generally initiated by a deprotonation of the cyclopentadienyl ring causing a group to migrate from a metal to a cyclopentadienyl ring, followed by quenching of the anion produced. The known examples include acyl, ester, hydride, and heteroatom-containing \((Si, Ge, Sn, P)\) groups, in conjunction with Group 6 to Group 8 transition-metal elements. In this communication, the migrating group is extended to carbon-containing functions; the first observation of an acetylide migration from iron to cyclopentadienyl is detailed.

To a solution of the iron-acetylide complex \((\eta^1-C_5H_5)\-Fe(CO)\(_2\)(C\(_5\)H\(_5\))\) at \(-78°C\), was added dropwise lithium disopropylamide \((\text{LDA}, 1.5 \text{ equivalents})\) and was stirred for a short time before an excess of MeI was added to give a yellow compound \((\eta^1-C_5H_5)\-Fe(CO)\(_2\)(C\(_5\)H\(_5\))Me\). Typical anion-induced acetylide migration reaction. To a solution of compound 1 (1.0 mmol) in THF (50 mL) at \(-78°C\), was added MeI (1.5 mmol in 1.0 mL of THF). The solution changed from tan yellow to dark red. The IR bands at 2108 cm\(^{-1}\) (MeI) disappeared and an new band showed up at 1758 cm\(^{-1}\). After being stirred for 30 min, an excess of MeI was added and the solution returned to tan yellow. The IR w-c bands changed position to 2088, 1525 cm\(^{-1}\).

† Typical anion-induced acetylide migration reaction. To a solution of compound 1 (1.0 mmol) in THF (50 mL) at \(-78°C\), was added dropwise LDA (1.5 mmol in 1.0 mL of THF). The solution changed from tan yellow to dark red. The IR bands at 2108 cm\(^{-1}\) (MeI) disappeared and an new band showed up at 1758 cm\(^{-1}\). After being stirred for 30 min, an excess of MeI was added and the solution returned to tan yellow. The IR w-c bands changed position to 2088, 1525 cm\(^{-1}\).

† Crystal data for compound 3. \(C_{12}H_{18}FeO\). M = 330.13, triclinic, \(P\(\bar{1}\), \(a = 7.0582(6)\), \(b = 9.440(1)\), \(c = 11.836(9)\), \(\beta = 76.162(7)\), \(\gamma = 89.054(8)\).\) U = 722.07(12) \(A^3\). Z = 2, \(F(000) = 328, D_c = 1.47 \text{ g cm}^{-3}\). \(T = 298 \text{ K}, \lambda = 0.70169 \text{ Å}, \Delta = 0.005 = 45.0\text{°}, m = 0.15 \text{ mm}^{-1}\). Transmission factors 0.894-0.998. \(R = 0.029, R_p = 0.051, S = 3.73\). E = 15, for 33 atoms, 190 parameters and 1580 of 1893 reflections (\(2 > 2\sigma(I)\)). CCDC reference number 86873.
ceed with an acetyl migration to give \(\text{Fe} \text{Me} \text{Fe} \text{Me} \text{C} \text{Me} \text{Fe} \text{Me} \text{Fe} \text{Me} \) (55%).

The single-end acetylide migration product was similarly obtained using smaller amounts of LDA. Although the transformations of 1 to 2, of 1 to 3 then to 4, of 5 to 7, and of 8 to 10 were 100% on the basis of IR \(\nu(\text{CO}) \) monitoring, the isolated yields of migration products by column chromatography were only ca. 40–60%, reflecting a loss during purification. With a wide area to improve and to explore, the acetylide migration reaction is expected to be of use in the preparation of polyethynylated organometallic materials.

Acknowledgements

The authors are indebted to Academia Sinica and the National Science Council, Republic of China for kind financial support.

References

Received 19th December 1997; Communication 709100A