Alkyne–carbide coupling on WO₃ cluster framework; synthesis and X-ray structure of (C₅Me₅)WO₃(μ₄-C)(μ-CHCHR)(CO)₁₀ and (C₅Me₅)WO₃[μ₃-CCR(CH₂)](CO)₁₀, R = CH₂Ph

Yun Chi a,*, Cathy Chung a, Wen-Cheng Tseng a, Yung-Chia Chou a, Shie-Ming Peng b, Gene-Hsiang Lee b

a Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan ROC
b Department of Chemistry and Instrumentation Center, National Taiwan University, Taipei 10764, Taiwan ROC

Received 12 May 1998; received in revised form 24 August 1998

Abstract

The reaction of the carbido cluster complex (C₅Me₅)WO₃(μ₄-C)(μ-H)(CO)₁₁ (1) with 4-ethyltoluene is investigated. This reaction results in the formation of an alkylidyne compound (C₅Me₅)WO₃(μ₃-CCHCH₆Tol)(CO)₁₁ (2) with a trans CH–CHTol substituent. Moreover, the corresponding reaction of 1 with 3-phenyl-1-propyne affords an alkenyl carbido cluster (C₅Me₅)WO₃[μ₄-C](CHCHCH₂Ph)(CO)₁₀ (3) and another alkylidyne compound with formula (C₅Me₅)WO₃[μ₃-CCR(CH₂)(CH₂)](CO)₁₀ (4). The compounds 3 and 4 are characterized spectroscopically in solution and with single crystal X-ray diffraction in the solid state. The possible mechanism leading to their formation is discussed. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Alkyne–carbide coupling; WO₃ cluster framework

1. Introduction

The chemistry of carbido cluster complexes has developed in recent years to constitute a distinct research domain [1]. The majority of the research is focused on the ligand substitution reaction and cluster building reaction [2], in which the carbido atom serves as the supporting group to hold up the surrounding metal atoms, while another less investigated subject involves studying the reactivity of the carbido ligand itself, namely the C–C and C–H bond coupling reaction in the framework of the metal cluster compounds [1a]. The latter is particularly valuable because it represents the key pathway for the conversion of carbides to large hydrocarbon fragments on catalytic metal surfaces [3]. However, the aspect of the C–C and C–H bond coupling reaction of carbide has never been actively pursued because the synthetic chemistry leading to the cluster complexes with an exposed carbide is still in an emerging state. On the other hand, when the target molecule can be made in good yield from easily accessible starting materials, systematic investigations of the corresponding reaction with organic molecules have been extensively examined. For example, Bradley [4] and Shriver [5] illustrated that the carbide in the anionic Fe₄ system could react with methanol, alkylation reagents or acids, resulting in the formation of various substituted alkylidyne ligands. In the related neutral Ru₄ complex, Lewis and Johnson reported on the thermally induced, direct coupling of diphenylacetylene with the carbide [6]. Consequently, there should have considerable merit in seeking new examples for such reactions and developing the reactivity of the carbido cluster compounds.
In pursuing this type of research, the authors have reported on a reversible coupling reaction between carbide and alkylidyne on a pentametallic cluster framework [7], a heretofore unidentified reaction pattern, but which has been extensively discussed according to the conformity between ligated acetylides and carbide–alkylidyynes [8]. In this article, the authors report on a related carbide and alkylene coupling involving the carbido cluster (C5Me5)WOs3(μ4-C)(μ-H)(CO)11 (1) with terminal alkynes, 4-ethyl toluene or 3-phenyl-1-propyne. Interestingly, three products are produced in modest yields by hydride migration to the carbide in one case, and coupling of the resulting alkenyl fragment with the carbide in the others. The obtained result is in contrast to that of the coupling reaction of 1 with an electron deficient alkylene discussed earlier [9], in which the key reaction step involves the hydride migration to the carbide, highlighting a difference between these seemingly analogous alkylene coupling reactions.

2. Experimental details

2.1. General information and materials

IR spectra were recorded on a Perkin-Elmer 2000 FT-IR spectrometer. 1H- and 13C-NMR spectra were recorded on a Bruker AMX-300 (300.6 MHz) instrument, respectively. Mass spectra were obtained on a JEOL-HX110 spectrometer. 1H- and 13C-NMR spectra were recorded on a Bruker AM-400 (400.13 MHz) or a Bruker AMX-300 (300.6 MHz) instrument operating in fast atom bombardment modes (FAB). All reactions were performed under a nitrogen atmosphere using solvents dried with an appropriate reagent.

2.2. Reaction of 1 with 4-ethyl toluene

An acetonitrile solution (20 ml) of freshly sublimed Me3NO (47.7 mg, 0.58 mmol) was added dropwise to a mixture of CH2Cl2 (50 ml), acetonitrile (20 ml) and (C5Me5)WOs3(μ4-C)(μ-H)(CO)11 (1, 200 mg, 0.17 mmol). The addition of Me3NO caused the color of the solution to change from light yellow to orange. Two hours later, the solvents were removed in vacuo and the mixture was redissolved in 80 ml of toluene. 3-Phenyl-1-propyne (0.52 ml, 4.17 mmol) was added and the resulting solution was heated to reflux for 10 min. The reaction mixture was then concentrated and separated by thin layer chromatography. Development with a 1:4 mixture of CH2Cl2:hexane produced two bands, which were extracted from silica gel to yield 200 mg of orange (C5Me5)WOs3(μ4-C)(CH3CHCH2Ph)(CO)10 (3, 0.154 mmol, 37%), and 79 mg of brown (C5Me5)WOs3(μ4-C)(CH3)(CH2)(CH2)(CO)10 (4, 0.061 mmol, 15%). Single crystals suitable for X-ray diffraction studies were obtained from a mixture of CH2Cl2 and methanol at r.t.

2.2.1. Spectral data for 2

MS FAB (184W, 180Os): m/z 1332 (M+). IR (C6H12): ν(CO), 2076 (s), 2037 (vs), 2027 (vs), 2005 (m), 1993 (w), 1982 (w), 1974 (w), 1967 (w), 1952 (br), 1825 (br, νw) cm⁻1. 1H-NMR (400 MHz, CDCl3, 293 K): δ 7.38 – 7.32 (m, 5H), 7.24 (t, 1H, JHH = 6.7 Hz), 3.14 – 3.07 (m, 2H), 2.19 (dd, 1H, JHH = 10.5 and 13.2 Hz), 2.06 (s, 15H). 13C-NMR (100 MHz, CDCl3, 293 K): δ 171.7, 170.9, 169.9 (2C), 141.5 (i-C6H5), 128.7 (o-C6H5), 128.0 (m-C6H5), 2C), 128.0 (m-C6H5), 126.4 (p-C6H5), 122.2 (CH, JHC = 43 Hz), 104.9 (C5Me5), 71.5 (CH), 44.4 (CH2), 11.2 (C6H5). Elem. Anal. for C30H24O11Os3W. Found: C, 28.07; H, 1.79. Calc.: C, 28.06; H, 1.82.

2.3. Reaction of 1 with 3-phenyl-1-propyne

An acetonitrile solution (20 ml) of freshly sublimed Me3NO (47.7 mg, 0.58 mmol) was added dropwise to a mixture of CH2Cl2 (50 ml), acetonitrile (20 ml) and (C5Me5)WOs3(μ4-C)(μ-H)(CO)11 (1, 200 mg, 0.17 mmol). The addition of Me3NO caused the color of the solution to change from light yellow to orange. Two hours later, the solvents were removed in vacuo and the mixture was redissolved in 80 ml of toluene. 3-Phenyl-1-propyne (0.52 ml, 4.17 mmol) was added and the resulting solution was heated to reflux for 10 min. The reaction mixture was then concentrated and separated by thin layer chromatography. Development with a 1:4 mixture of CH2Cl2:hexane produced two bands, which were extracted from silica gel to yield 200 mg of orange (C5Me5)WOs3(μ4-C)(CH3CHCH2Ph)(CO)10 (3, 0.154 mmol, 37%) and 79 mg of brown (C5Me5)WOs3(μ4-C)(CH3)(CH2)(CH2)(CO)10 (4, 0.061 mmol, 15%). Single crystals suitable for X-ray diffraction studies were obtained from a mixture of CH2Cl2 and methanol at r.t.

2.3.1. Spectral data for 3

MS FAB (184W, 180Os): m/z 1304 (M+). IR (C6H12): ν(CO), 2077 (s), 2040 (vs), 2023 (s), 2004 (s), 1981 (s), 1969 (w), 1951 (w), 1888 (w) cm⁻1. 1H-NMR (400 MHz, CDCl3, 293 K): δ 7.38 – 7.32 (m, 5H), 7.24 (t, 1H, JHH = 6.7 Hz), 3.14 – 3.07 (m, 2H), 2.19 (dd, 1H, JHH = 10.5 and 13.2 Hz), 2.06 (s, 15H). 13C-NMR (100 MHz, CDCl3, 293 K): δ 347.3 (JWC = 108 Hz), 216.6 (JWC = 160 Hz), 184.8 (br), 182.3, 179.2 (br), 178.5, 177.4 (br, 2C), 172.1 (br), 169.9 (2C), 141.5 (i-C6H5), 128.7 (o-C6H5), 128.0 (m-C6H5), 2C), 128.0 (m-C6H5), 2C), 126.4 (p-C6H5), 122.2 (CH, JHC = 43 Hz), 104.9 (C5Me5), 71.5 (CH), 44.4 (CH2), 11.2 (C6H5). Elem. Anal. for C30H24O11Os3W. Found: C, 28.20; H, 1.79. Calc.: C, 28.06; H, 1.82.

2.3.2. Spectral data for 4

MS FAB (184W, 180Os): m/z 1304 (M+). IR (C6H12): ν(CO), 2074 (s), 2037 (vs), 2010 (vs), 1998 (s), 1974 (w),
2.4. X-ray crystallography

The X-ray diffraction measurements were carried out on a Nonius CAD-4 diffractometer at r.t. Lattice parameters were determined from 25 randomly selected large angle reflections. Three standard reflections were monitored every 3600 s. No significant change in intensities (≤ 2%) was observed during the course of all data collection. Intensities of the diffraction signals were corrected for Lorentz, polarization and absorption effects. The 2θ scans were collected on a Nonius CAD-4 diffractometer at r.t. Lattice constants were refined by the least-squares method. Crystallographic refinement parameters of complexes 3 and 4 are given in Table 1, while their atomic co-ordinates are presented in Tables 2 and 3, respectively. The completed listings of bond distances and angles, tables of anisotropic thermal parameters, and tables of the observed and calculated structural factors are available from the corresponding author.

3. Results and discussion

When the carbido cluster complex \((\text{C}_5\text{Me}_5)\text{WO}_{3}\text{S}(\mu_4-\text{C}(\mu-H)\text{CO})_{11}\) (1) was first treated with excess of anhydrous Me_3NO in a mixed solution of CH_2Cl_2 and acetonitrile, treatment of this Me_3NO-activated compound with 4-ethyltoluene in refluxing toluene solution produced a red alkylidyne complex \((\text{C}_5\text{Me}_5)\text{WO}_{3}\text{S}(\mu_5-\text{CCHCHTol})\text{CO})_{11}\) (2) in low yield (Scheme 1). This compound was fully identified by its spectroscopic data. The FAB MS analysis confirms the formula of C_{30}H_{24}O_{10}Os_{3}W, which is formally produced by the addition of one 4-ethyltoluene molecule. The IR spectrum in solution shows a CO stretching pattern similar to that of the structurally characterized alkylidyne compounds LWO_{3}\text{S}(\mu_3-CR)CO), L = Cp and C_5Me_5, R = H-C_5H_{11}, Tol and H (see Chart 1) [10], providing the unambiguous supporting evidence for the cluster skeletal arrangement.

1H-NMR (400 MHz, CDCl_3, 293 K): \(\delta \) 7.58 (d, 2H, \(J_{HH} = 7.4 \) Hz), 7.46 (t, 2H, \(J_{HH} = 13.1 \) Hz), 3.85 (d, 1H, \(J_{HH} = 7.4 \) Hz), 4.07 (d, 1H, \(J_{HH} = 13.1 \) Hz), 3.71 (s, 1H), 2.12 (s, 1H), 1.73 (s, 15H). 13C-NMR (100 MHz, CDCl_3, 293 K): \(\delta \) 290.8 (\(J_{WC} = 102 \) Hz), 220.9 (\(J_{WC} = 168 \) Hz), 218.1 (\(J_{WC} = 156 \) Hz), 184.4, 183.7, 180.5 (3C), 178.2 (3C), 141.7 (o-C_{6}H_{5}), 127.4 (p-C_{6}H_{5}), 118.6, 103.5 (C_{5}Me_{5}), 54.1 (CH_{3}), 22.3 (CH_{2}), 10.2 (C_{5}Me_{5}).

Maximum weight modifier, 0.031; 0.047; 0.041; 0.047

Goodness-of-fit: 1.31

R-map, min max (cm/Å)

1.99/1.14

2.52/2.73

\(^a\) Features common to all determinations: Nonius CAD-4 diffractometer, \(\alpha(\text{Mo}-K_{\beta}) = 0.7107 \) Å; minimize function: \(\Sigma(wF_o^2 F_c^2)\); weighting scheme: \(w^{-1} = \sigma^2(F_o^2) + [\sigma(F_o^2)]^2\); goodness-of-fit = \(\Sigma w[F_o - F_c]^2/(N_o - N_v)\)^{1/2} (\(N_o\) = number of observations; \(N_v\) = number of variables).
ality of CO ligands due to the rapid terminal-to-bridging CO exchange on the tungsten atom and the tripodal rotation on the osmium metal centers [10d].

The corresponding reaction of 1 with 3-phenyl-1-propyne was then examined, affording two products \((\text{C}_5\text{Me}_5)\text{WOs}_3(\mu^2-\text{C}((\text{CHCHCHPh}))\text{CO})_{10}\) (3) and \((\text{C}_5\text{Me}_5)\text{WOs}_3(\mu^2-\text{CC(CHPh)}(\text{CH}_2)\text{CO})_{10}\) (4) in moderate yields (Scheme 2). For these cluster complexes, their FAB MS spectra exhibited a parent ion at \(m/z\) 1304, corresponding to the formula \(\text{C}_{30}\text{H}_{24}\text{O}_{10}\text{Os}_3\text{W}\), which is possibly produced by removal of one CO ligand and addition of an alkylamine fragment. The \(^1\)H-

NMR spectra were then recorded and readily interpreted. Again, no high-field signal was noted, suggesting that the bridging hydride of 1 has migrated.
to the incoming 3-phenyl-1-propyne. In agreement with this postulation, the formation of two alkenyl resonances at \(J_{HH} \) of \(7.42 \) (1H, 1H, \(J_{HH} = 6.7 \) Hz) and 2.19 (dd, 1H, \(J_{HH} = 10.5 \) and 13.2 Hz) was observed for complex 3, along with a complex of multiplets located in the region \(7.58 \sim 7.46 \) with an intensity ratio due to two doublets, the olefinic and methylene proton resonances at \(7.58 \) and 7.46, with a coupling constant \(J_{HH} = 7.4 \) Hz, and two sharp singlets at 3.71 and 2.12, respectively.

On the other hand, the \(^{13}\text{C}-\text{NMR} \) spectrum of 3 exhibits one down-field carbide signal at \(\delta = 347.3 \) (\(J_{WC} = 108 \) Hz) and one \(\text{WCO} \) signal at \(\delta = 216.6 \) (\(J_{WC} = 160 \) Hz); both are indicated by the presence of characteristic \(J_{WC} \) coupling, and seven \(\text{OsCO} \) signals in the range between \(\delta = 184.8 \) and 169.9. In contrast, the \(^{13}\text{C}-\text{NMR} \) spectrum of 4 shows no down-field carbido signal, but gives one relatively high-field signal at \(\delta = 290.8 \) (\(J_{WC} = 102 \) Hz) that is best assigned to an alkylidyne \(\pi \)-carbon atom [11], together with two \(\text{WCO} \) signals at \(\delta = 220.9 \) (\(J_{WC} = 168 \) Hz) and 218.1 (\(J_{WC} = 156 \) Hz), and four sharp \(\text{OsCO} \) signals at \(\delta = 184.4, 183.7, 180.5 \) and 178.2, with an intensity ratio 1:1:3:3. As these \(^{1}\text{H}-\text{and} {^{13}\text{C}-\text{NMR} \) spectroscopic data are still not sufficient to reveal their exact structures, the X-ray diffraction studies were then carried out to reveal the true identity of these products.

The crystals suitable for X-ray diffraction study can be obtained by diffusion of methanol into a \(\text{CH}_2\text{Cl}_2 \) solution at r.t. The ORTEP diagram is depicted in Fig. 1, while the bond distances are summarized in Table 4.

The overall structure consists of a typical \(\text{WO}_3 \) butterfly skeleton. The \(\text{W} \) atom is located at a wing-tip position, which is further co-ordinated by a \(\text{C}_5\text{Me}_5 \) and a \(\text{CO} \) ligand. The remaining nine \(\text{CO} \) ligands are equally distributed over three osmium atoms. The carbido atom \(\text{C}(10) \) is bound to all four metal atoms with short \(\text{M(wing-tip)}-\text{C} \) distances (average 1.96(4) \(\text{Å} \)) and long \(\text{M(hinge)}-\text{C} \) distances (average 2.17(4) \(\text{Å} \)). This observed bond pattern is typical for the carbido atom in the butterfly environment [12].

In addition, it was observed that the 3-phenyl-1-propyne in 4 has now converted to a \textit{trans}-vinyl fragment \(\text{CH}\text{CH}_2\text{Ph} \) by placing a hydrogen on the \(\text{C}(13) \) atom. This bridging vinyl group is linked to the atom \(\text{Os}(3) \) through a \(\sigma \)-interaction and to the \(\text{W} \) atom via a dative \(\pi \)-interaction, although the observed \(\text{W-C}(12) \) distance (2.099(10) \(\text{Å} \)) is slightly shorter than that of the \(\text{Os}(3)-\text{C}(12) \) distance (2.193(10) \(\text{Å} \)).
such a structural feature is common for the cluster compounds bearing an edge-bridging vinyl ligand and is also consistent with the parameters observed in a closely related cluster complex \((\text{C}_5\text{Me}_5)\text{WO}_3(\mu_4-C)(\text{CHCHCH}_2\text{Ph})(\text{CO})_{10}\) [7c].

In contrast to that of complex 3, the cluster core of 4 consists of a tetrahedral geometry composed of a \((\text{C}_5\text{Me}_5)\text{W}(\text{CO})_2\) vertex, together with two Os(CO)$_3$ and one Os(CO)$_2$ units that form a metal triangle at the basal position (Fig. 2). The W–Os distances span the range 2.888(1) – 3.008(1) Å, while the Os–Os distances are slightly shorter with the Os(1)–Os(2) distance 2.717(1) Å being the shortest of whole molecule (see Table 5). This variation of metal–metal distances fall within the expected range for the 60 electron, tetrahedral WOs$_3$ cluster compound [16]. The alkylidyne \(\equiv\)carbon atom C(11), which is obviously derived from the carbide ligand of 1, resides on the W–Os(2)–Os(3) metal triangle with three nearly equal metal–carbon distances 2.06(1) – 2.09(1) Å, and is linked to an alkenyl fragment, CH$_2$–CCH$_2$Ph substituent. This newly formed alkenyl group, produced by hydride migration to the terminal carbon of 3-phenyl-1-propyne, is further coordinated to the unique Os(CO)$_2$ vertex with slightly elongated bond lengths Os(2)–C(12) = 2.19(2) Å and Os(2)–C(13) = 2.20(1) Å. If this secondary olefinic \(\pi\)-interaction is ignored, the overall geometry is analogous to that of the previously discussed alkylidyne complex 2, for which the cluster skeleton possess a face-bridging alkylidyne ligand and three Os(CO)$_3$ metal vertices at the basal positions.

4. Discussion

As stated above, treatment of 1 with Me$_3$NO, followed by addition of 4-ethynyl toluene or 3-phenyl-1-propyne leads to the isolation of three stable cluster compounds 2, 3 and 4 in moderate yields. Attempts to duplicate this coupling reaction by the direct treatment of 1 with the alkyne were unsuccessful, suggesting that the prior addition of Me$_3$NO is crucial in activating the carbido cluster compound 1. By analogy to other alkyne coupling reactions using Me$_3$NO as the initiator [17], the authors believe that the first step is the removal of a CO ligand from an osmium atom, which offers a lower energy pathway for the incoming alkyne molecule to link to the cluster framework. After that, the hydride migration to the alkyne and simultaneous coupling with the carbide would give rise to the formation of vinyl alkylidyne clusters 2 and 4. If the reaction stopped after the hydride migration to alkyne, formation of the carbido alkenyl complex 3 is envisioned without the accompanied carbide–alkenyl coupling. Interestingly, it is tempting to say that complexes 3 and 4 are related to the alkylidyne complex 2 through two independent hypothetical transformations (Scheme 2) involving the C–C bond formation between carbide and alkenyl ligand or the removal of alkenyl \(\pi\)-bonding, respectively. However, heating of the complexes 3 or 4 at 110°C under CO atmosphere for 30 min led to neither the formation of such alkylidyne complexes nor decomposition. These observations terminate the current attempt to delineate the mechanistical relationship between complexes 2, 3 and 4.
Fig. 2. Molecular structure and atomic labeling scheme of the complex (C₅Me₅)WO₅₃[μ₃-CC(CH₂Ph)(CH₂)](CO)₁₀ (4) with thermal ellipsoids shown at the 30% probability level.

Still, these results are in contrast to those reported in a preceding paper dealing with the coupling of 1 with an electron deficient alkyne, diisopropyl acetylenedicarboxylate (DPAD) [9], in which the authors observed the formation of a dimetallaallyl cluster (C₅Me₅)WO₅₃(CO)₁₀[C₃H(CO₂i-Pr)₂] (5) as the major product, then underwent C-C bond metathesis to afford a second dimetallaallyl cluster (6) with the CH group moved to the central position (Scheme 3). Obviously, the dimetallaallyl fragment in 5 is produced by an independent process involving hydride migration to the carbide and coupling with DPAD. The origin of these differing behaviors is not known; however, it is possible that the electron deficiency on DPAD would somehow increase the activation barrier for alkyne–hydride coupling. Thus, the reaction proceeded through a pathway characterized by the carbide–hydride coupling to give a methylidyne ligand, followed by methylidyne–alkyne coupling, a process that is well-established in literature [18]. On the other hand, trace amounts of a related vinyl–alkylidyne cluster (7) was observed as a minor product for the reaction of 1 with DPAD in refluxing toluene solution, suggesting that the hydride migration to alkyne was more favorable at the higher reaction temperature. Thus, the chemistry observed in present study provides an unambiguous experimental model for the less accessible route of the coupling between hydride, alkyne and carbide on the WOs₅ tetrametallic cluster framework.

Acknowledgements

The authors thank the National Science Council of the Republic of China for financial support (Grant No. NSC 87-2113-M-007-047).

References

