OXYGEN-17 NMR STUDY ON SUBSTITUTED $\alpha, \alpha, \alpha$-TRIFLUOROACETOPHENONES*

KWANG-TING LIU, † TSENG-RONG WU AND YING-CHIH LIN
Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan, Republic of China

ABSTRACT

An excellent linear correlation of oxygen-17 substituent chemical shifts (SCS) for twelve $\alpha, \alpha, \alpha$-trifluoroacetophenones with single $\sigma^+$ constants, $\delta = 24.6\sigma^+ + 556.3$ (correlation coefficient 0.998) has been observed. However, from this plot, an SCS of 34.3 ppm for 1,1,1-trifluoroacetone will give a corresponding $\sigma^+ (\gamma^+)$ value of 1.44 for a methyl group, which is not in agreement with 0.63-0.79 obtained from solvolytic rate data.

Measurements of oxygen-17 NMR chemical shifts have been successfully employed as a tool for the study of structural effects on acetophenones and other series of aromatic compounds. In cases where the electronic effects of meta and para substituents are concerned, correlations of substituent chemical shifts (SCS) with dual substituent parameters (DSP) have generally been observed. It has been reported that the $^{17}$O chemical shifts of substituted anisoles show a good linear correlation with $\sigma^-$. On the other hand, in this study the first example of an excellent linear correlation of $^{17}$O SCS values for $\alpha, \alpha, \alpha$-trifluoroacetophenones (1a-1) with single $\sigma^+$ constants is realized.

The substituted $\alpha, \alpha, \alpha$-trifluoroacetophenones 1a-e and 1g-l were synthesized from the corresponding aryl halides via a Grignard reaction with trifluoroacetic anhydride at $-70^\circ$C. (The ketones 1a, 1b and 1d-j showed IR and $^{19}$F NMR spectra identical with the literature data. For ketones 1e and 1k-1l, both the spectral and the analytical data (C, H) were in agreement with the assigned structures.) A 0.5 M solution of the ketone, 1 or 1,1,1-trifluoroacetone (2), in carbon tetrachloride was dried over 4A molecular sieve before it was transferred into an NMR tube for measurement (the drying is essential because the ketone form hydrates readily). [The $^{17}$O spectra were recorded on a Bruker AM-300WB spectrometer equipped with a 10-mm broad-band probe operating at 40.688 MHz. All chemical shifts were measured relative to an external deuterium oxide reference. The instrument settings were 50 kHz spectral width, 2K data points, 90° pulse angle (12.5 μs pulse width), 1 ms acquisition delay and 16 ms acquisition time. The signal-to-noise ratio was improved by

---

†Author for correspondence.

0894–3230/89/040363–04$05.00
© 1989 by John Wiley & Sons, Ltd.

Received 31 October 1988
Revised 27 January 1989
Table 1. Oxygen-17 chemical shifts for trifluoroketones

<table>
<thead>
<tr>
<th>ArCOCF₃</th>
<th>Ar</th>
<th>σ⁺ᵇ</th>
<th>δ(C=O)</th>
<th>δ(Other)</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>5'-Coumaranyl</td>
<td>-0.984ᶜ</td>
<td>531.0</td>
<td>99.1</td>
</tr>
<tr>
<td>lb</td>
<td>4'-CH₃OC₆H₄</td>
<td>-0.778</td>
<td>537.1</td>
<td>62.4</td>
</tr>
<tr>
<td>lc</td>
<td>4'-C₆H₅OC₆H₄</td>
<td>-0.560ᵈ</td>
<td>543.2</td>
<td>114.4</td>
</tr>
<tr>
<td>ld</td>
<td>4'-CH₃C₆H₄</td>
<td>-0.311</td>
<td>549.7</td>
<td></td>
</tr>
<tr>
<td>le</td>
<td>3'-CH₃C₆H₄</td>
<td>-0.066</td>
<td>554.4</td>
<td></td>
</tr>
<tr>
<td>lf</td>
<td>C₆H₅</td>
<td>0.000</td>
<td>557.6</td>
<td>556.5</td>
</tr>
<tr>
<td>lg</td>
<td>3'-FC₆H₄</td>
<td>0.352</td>
<td>563.8</td>
<td></td>
</tr>
<tr>
<td>lh</td>
<td>3'-ClC₆H₄</td>
<td>0.399</td>
<td>564.7</td>
<td></td>
</tr>
<tr>
<td>li</td>
<td>3'-CF₃C₆H₄</td>
<td>0.520</td>
<td>568.5</td>
<td></td>
</tr>
<tr>
<td>lj</td>
<td>4'-CF₃C₆H₄</td>
<td>0.612</td>
<td>572.6</td>
<td></td>
</tr>
<tr>
<td>lk</td>
<td>3',5'-ClC₆H₃</td>
<td>0.701ᶠ</td>
<td>579.4</td>
<td></td>
</tr>
<tr>
<td>ll</td>
<td>3',5'-(CF₃)₂C₆H₃</td>
<td>0.946ʰ</td>
<td>579.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CH₃</td>
<td></td>
<td>591.8ᵉ</td>
<td></td>
</tr>
</tbody>
</table>

ᵃ Measured at 60 °C unless stated otherwise.
ᵇ From ref. 13 unless stated otherwise mentioned.
ᶜ Ref. 15.
ᵈ Ref. 14.
ᵉ measured at 25 °C.
ᶠ Ref. 17.
ʰ Ref. 16.

Figure 1. Plot of $^{17}$O SCS in trifluoroacetophenones against $σ⁺$

applying a 25 Hz exponential broadening factor to the free induction decay prior to Fourier transformation. Generally, spectra with a signal-to-noise ratio of ca 10:1 were obtained from $10⁵–10⁶$ scans. The observed $^{17}$O chemical shifts at natural abundance are listed in Table 1. An excellent linear plot (Figure 1) was obtained from the correlation analysis of SCS for $δ^{17}O$ with a large range of $σ⁺$ constants ($-0.984$ to $0.946$): $^{13-17} δ = 24·6σ⁺ + 556·3$ (correlation coefficient $0.998$).

The $^{17}$O SCS values for acetophenones were found to have best fits with dual parameters, $σ₁$ and $σ₂$: $δ = 18·6σ₁ + 24·0 σ₂$. Less satisfactory correlations resulted from the use of the single-parameter method with $σ$ ($r = 0.92$) or with $σ⁺$ ($r = 0.96$). Although a direct conjugation between the carbonyl oxygen and the aryl ring is unlikely, the $δ^{17}O$ in substituted acetophenones has been considered to be dependent on the relative
contributions from the canonical structures 3a–e ($R = CH_3$), and has been found to correlate well with the $\pi$-electron densities obtained from ab initio MO calculations. The present observation of the excellent linear relationship between $^{17}O$ SCS values with $\sigma^+$ constants for 1 is probably due to the presence of the strong electron-attracting trifluoromethyl group, which may increase the weight of contributions from the dipolar structures 3b–e ($R = CF_3$) significantly.

\[\begin{array}{cccc}
R C=O & R CO^- & R CO^- & R CO^- \\
3a & 3b & 3c & 3d & 3e
\end{array}\]

It is also interesting that the downfield shift of the $^{17}O$ chemical shift for 2 is large compared with that for 1. Moreover, from this plot an SCS of 34·3 ppm for 2 (open circle) will give a corresponding $\sigma^+$ ($\gamma^+$) value of 1·44 for the methyl group, which is not in agreement with the value of 0·63–0·79 obtained from the solvolytic rate data, assuming that it can be regarded as a deactivating aryl group. Comparison of the rate of solvolysis for 1,1,1-trifluoro-2-phenyl-2-propyl tosylate vs that for the 2,2,2-trifluoro-1,1-diphenylethyl analogue in 80% ethanol would yield a corresponding value of 0·81 for the methyl. Although both the solvolytic reactivities of various tertiary benzylic substrates with or without an $\alpha$-trifluoromethyl group and the $^{17}O$ SCS values observed in the present study exhibit excellent Hammett–Brown plots with $\sigma^+$ constants, there is a significant difference between these two extrapolated $\gamma^+$ values for the methyl group (1·44 vs 0·63–0·79). This suggests that there might be little interrelation between the chemical shift of the aromatic acyl oxygen and the benzylic reactivities for solvolysis. Other spectroscopic studies on 1 are in progress.

ACKNOWLEDGEMENT

We are indebted to the National Science Council for financial support of this research.

REFERENCES