BINDING ENERGIES OF D^- IN GaAs QUANTUM WELL

Y. H. Chang1, J. J. Yeh1,†, Y. M. Sheu1, C. C. Wang1, T. C. Chen1, K. H. Chang2 and C. P. Lee2

1Department of Physics, National Taiwan University, Taipei, Taiwan and 2Institute of Electronics, National Chiao-Tung University, Hsinchu, Taiwan, Republic of China

Abstract—Magnetic field dependent binding energies of the D^- ion in the center of a 210 Å GaAs quantum well are determined by temperature dependent magneto-transport measurements. The binding energies increase from 2.1 meV at 2 T to 4 meV at 8 T, and are consistently higher than the transition energies obtained from magneto-optical measurements performed on the same sample. We conclude from these data that in the magneto-optical measurement the observed transitions are between ground and excited D^- states.

The properties of D^- ions in GaAs quantum wells have attracted much attention recently[1-9]. A D^- ion is a shallow impurity that binds two electrons. The binding energy of a D^- ion is lower than for the neutral impurity (D^0) because of the Coulomb repulsion energy between the two electrons. This is a simple many electron system and is an analogue of the H$^-$ ion in atomic physics. D^- ions can be generated much easier in a quantum well system than in a 3D system[10]. With shallow impurities placed in both GaAs quantum wells and AlGaAs barriers the impurity atoms in the wells can capture an extra electron released from barrier impurities to form a D^- ion. Because of the effect of quantum confinement, the binding energy of D^- ion in quantum well is enhanced over the corresponding three dimensional value. For example, the binding energy of a D^- ion in bulk GaAs is 0.32 meV, while the binding energy of a D^- ion in the center of a 100 Å GaAs quantum is about 1.7 meV[2]. In the presence of a magnetic field, the energy levels of D^- ion are strongly modified. From optical measurements, transitions between D^- ground state to other states can be observed. But there is still some controversy whether the final states in the observed optical transitions are free electron Landau levels or excited states of D^- ion. In the former case, the binding energy of D^- ion can be easily determined from optical transition energies, while in the latter case, the binding energy of D^- ion can not be deduced from the transition energies directly. Here, we report our study on the activation energies of D^- ion in a 210 Å GaAs quantum well in the presence of magnetic field determined from transport measurements.

The center 70 Å of the wells are doped with n-type impurities of concentration 2×10^{10} cm$^{-3}$ and the center 100 Å of the barriers are doped with n-type impurities of concentration 1×10^{10} cm$^{-3}$. Hall pattern is defined by standard photo-lithography technique and contacts are made by alloying In dots into the sample. The sample, after being cooled down in the dark to 5 K is illuminated with red LED for about 1 min. The purpose of light illumination is to eject all the electrons trapped in AlGaAs into GaAs quantum well[11]. After the sample is illuminated with LED, there are nominally 1.4×10^{10} cm$^{-2}$ neutral impurities and 1.0×10^{10} cm$^{-2}$ excess electrons in each quantum well if the sample is uncompensated. Because there are not enough excess electrons, not all the neutral impurities can capture an excess electron to form a D^- ion. At low temperature, when thermal equilibrium is reached, 1.0×10^{10} cm$^{-2}$ D^- ions and 0.4×10^{10} cm$^{-2}$ D^0 in each quantum well are expected. After LED is turned off, the sample resistance reaches a constant value in a couple of minutes. Data were then taken with constant current flowing through the sample in sweeping magnetic field at fixed temperature. Far infrared photo-conductivity response of this sample has been published elsewhere[6]. Both D^0 and D^- related transitions can be clearly identified.

Typical dependence of longitudinal and transverse resistivities, ρ_{xx} and ρ_{yx}, with magnetic field applied along crystal growth ($z -$) direction are depicted in Fig. 1. Strong temperature dependence of ρ_{xx} and ρ_{yx} is a clear indication of activated transport. Since electron mobility in low magnetic field and low temperature is found to be around 2×10^5 cm2/V-s, the condition $\mu B > 1$ is satisfied and the free electron concentration (n_e) is given approximately[12,13] by:

$$n_e = \frac{1}{e} \frac{\rho_{xx}}{\rho_{yx} + \rho_{xx}} B.$$ (1)

But we also know that for thermally activated transport, n_e is given by $n_e = A \exp(-E_a/kT)$, here A is
Fig. 1. Magnetic field dependence of ρ_{xx} and ρ_{xy} at (a) 7.5 K and (b) 25 K.

The dependence of binding energies of a D^- ion in the center of a 210 Å GaAs quantum well on magnetic fields is shown in Fig. 3. Also shown in the figure are transition energies between D^- ground state ($|1S\,^2\rangle$) and first excited state ($|1S\,^2\,^1P^+\rangle$) obtained from magneto-photoconductivity measurements performed with sample cut from the same wafer[14]. Here the notation of Ref.[9] is used. As can be seen from Fig. 3, the binding energy of D^- ion increases monotonically with magnetic field and in the low magnetic field region the D^- binding energy increases faster than for the high field region. These results are qualitatively consistent with theoretical calculation. For a quantitative comparison, we can only compare our results with available calculations for D^- ion in bulk GaAs and D^- ion in the center of a 100 Å GaAs quantum well. At $B = 6.7$ T, the binding energies of D^- ion at the centre of a 100 Å GaAs quantum well is 4.1[9] ~ 4.5[2] meV, and the binding energy of a D^- ion in bulk GaAs is 1.9 meV[2]. At the same magnetic field, the binding energy obtained from our data is 3.8 meV which is close to the binding energy of D^- ion in the center of a 100 Å GaAs quantum well and is apparently quite reasonable.

From Fig. 3 we can see quite clearly that the binding energies determined from transport measurements are different from the transition energies obtained from optical measurements. The optical transition energies are always higher than the transport binding energies. These results clearly indicate that in the optical measurements, the observed transitions are from ground to excited D^- states, i.e. $|1S\,^2\rangle$ to $|1S\,^2\,^1P^+\rangle$ transition, and not from ground D^- state to free electron Landau level. For the latter to be true, the binding energies obtained from optical and transport measurements would be the same. From these data, we can also conclude that the energy level of the first excited state of a D^- ion in a 210 Å quantum well is higher than the lowest
free electron Landau level for magnetic field below 8T.

In conclusion, we have obtained the binding energies of a D^- ion in the center of a GaAs quantum well for magnetic fields from 2 to 8T. The results are quite consistent with theoretical calculations. Comparing the transport and optical data, we conclude that the transitions observed in optical measurements are between D^- ground and excited states. We also show that the first excited state of a D^- ion in the center of a 210 Å GaAs quantum well has an energy higher than the energy of ground state Landau level when the magnetic field is smaller than 8T, as predicted by Ref.[4] and concluded also in Ref.[7].

Acknowledgement—This work is supported by National Science Council of the Republic of China under contract NSC-82-0208-M002-68.

REFERENCES

14. C. C. Wang, Master thesis, National Taiwan University.