Ab initio calculation of intrinsic spin Hall conductivity of Pd and Au

G. Y. Guo

Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan

(Received 13 November 2008; received 5 September 2008; accepted 24 September 2008; published online 30 January 2009)

An ab initio relativistic band structure calculation of spin Hall conductivity (SHC) ($\sigma_{xy}$) in Pd and Au metals has been performed. It is found that at low temperatures, intrinsic SHCs for Pd and Au are, respectively, ~1400 and ~400 $(h/e)(\Omega \text{ cm})^{-1}$. The large SHC in Pd comes from the resonant contribution from the spin-orbit splitting of the doubly degenerated 4$d$ bands near the Fermi level at symmetry $\Gamma$ and $X$ points, and the smaller SHC in Au is due to the broad free-electron-like 6$s$6$p$ bands. However, as the temperature increases, the SHC in Pd decreases monotonically and reduces to ~330 $(h/e)(\Omega \text{ cm})^{-1}$ at 300 K, while the SHC in Au increases steadily and reaches ~750 $(h/e)(\Omega \text{ cm})^{-1}$ at room temperature. This indicates that the giant spin Hall effect [$\sigma_{xy} \approx 10^3 (h/e)(\Omega \text{ cm})^{-1}$] observed recently in the Au/FePt system [T. Seki et al., Nature Mater. 7, 125 (2008)] is due to the extrinsic mechanisms such as the skew scattering by the impurities in Au.

On the other hand, the SHE in metallic systems is currently attracting interest, stimulated by latest experimental reports on the SHE or inverse SHE, i.e., the transverse voltage drop due to the spin current.15–17 The spin Hall conductivity (SHC) in metals is much larger than that in the semiconductors. Naively, this may be due to the large number of carriers, but the band structure is very important. Furthermore, the Fermi degeneracy temperature is much higher than room temperature, and hence, the quantum coherence is more robust against the thermal agitations compared with the semiconductor systems.

In recent experiments for metallic systems,15,17 platinum shows a prominent SHE surviving even up to room temperature, whereas aluminum and copper show relatively little SHE. However, the mechanism of the SHE in metals has been assumed to be extrinsic. In Ref. 16 this difference is attributed to a magnitude of SOC for each metal. However, platinum seems to be special even among heavy elements. This material dependence strongly suggests a crucial role of intrinsic contributions. Therefore it is highly desired to study the intrinsic SHE of platinum as a representative material for metallic SHE. If this analysis successfully explains the experiment, it will open up the possibility to theoretically design the SHE in metallic systems. Therefore, we recently carried out ab initio calculations for the SHC in platinum.16 We found that the intrinsic SHC is as large as ~2000 $(h/e)(\Omega \text{ cm})^{-1}$ at low temperature and decreases down to ~200 $(h/e)(\Omega \text{ cm})^{-1}$ at room temperature. It is due to the resonant contribution from the spin-orbit splitting of the doubly degenerated $d$ bands at high-symmetry $L$ and $X$ points near the Fermi level. We showed, by modeling these near degeneracies by an effective Hamiltonian, that the SHC has a peak near the Fermi energy and that the vertex correction due to impurity scattering vanishes, indicating that the large SHE observed experimentally in platinum16 is of intrinsic nature.

Spin transport electronics (spintronics) has recently become a very active research field in condensed matter and materials physics because of its potential applications in information storage and processing and other electronic technologies3 and also because of many fundamental questions on the physics of electron spin.4–6 Spin current generation is an important issue in the emerging spintronics. Recent proposals of the intrinsic spin Hall effect (SHE) are therefore remarkable.3,4 In the SHE, a transverse spin current is generated in response to an electric field in a metal with relativistic electron interaction [spin-orbit coupling (SOC)]. This effect was first considered to arise extrinsically, i.e., by impurity scattering.5,6 The scattering becomes spin dependent in the presence of SOC, and this gives rise to the SHE. In the recent proposals, in contrast, the SHE can arise intrinsically in hole-doped (p-type) bulk semiconductors3 and also in electron-doped (n-type) semiconductor heterostructures4 due to intrinsic SOC in the band structure. The intrinsic SHE can be calculated and controlled, whereas the extrinsic SHE depends sensitively on details of the impurity scattering. Therefore, the intrinsic SHE is more important for applicational purposes in comparison with the extrinsic SHE.

In semiconductors, there have been experimental reports on the SHE in n-type GaAs,7 p-type GaAs,8 and n-type InGaN/GaN superlattices9 in recent years. These experimental results have been discussed theoretically, and it is now recognized that the SHE in n-type GaAs is due to extrinsic mechanisms, i.e., skew scattering and side-jump contributions,10,11 while that in p-type GaAs is mainly caused by an intrinsic mechanism.12,13 This conclusion is supported by a theoretical analysis of the impurity effect and vertex correction to SHE in the Rashba and Luttinger models.10,12 In p-GaAs the fourfold degeneracy at the $\Gamma$ point of the valence bands acts as the Yang monopole, which enhances the SU(2) non-Abelian Berry curvature.14

4Electronic mail: gyguo@phys.ntu.edu.tw.

Spin transport electronics (spintronics) has recently become a very active research field in condensed matter and materials physics because of its potential applications in information storage and processing and other electronic technologies3 and also because of many fundamental questions on the physics of electron spin.4–6 Spin current generation is an important issue in the emerging spintronics. Recent proposals of the intrinsic spin Hall effect (SHE) are therefore remarkable.3,4 In the SHE, a transverse spin current is generated in response to an electric field in a metal with relativistic electron interaction [spin-orbit coupling (SOC)]. This effect was first considered to arise extrinsically, i.e., by impurity scattering.5,6 The scattering becomes spin dependent in the presence of SOC, and this gives rise to the SHE. In the recent proposals, in contrast, the SHE can arise intrinsically in hole-doped (p-type) bulk semiconductors3 and also in electron-doped (n-type) semiconductor heterostructures4 due to intrinsic SOC in the band structure. The intrinsic SHE can be calculated and controlled, whereas the extrinsic SHE depends sensitively on details of the impurity scattering. Therefore, the intrinsic SHE is more important for applicational purposes in comparison with the extrinsic SHE.

In semiconductors, there have been experimental reports on the SHE in n-type GaAs,7 p-type GaAs,8 and n-type InGaN/GaN superlattices9 in recent years. These experimental results have been discussed theoretically, and it is now recognized that the SHE in n-type GaAs is due to extrinsic mechanisms, i.e., skew scattering and side-jump contributions,10,11 while that in p-type GaAs is mainly caused by an intrinsic mechanism.12,13 This conclusion is supported by a theoretical analysis of the impurity effect and vertex correction to SHE in the Rashba and Luttinger models.10,12 In p-GaAs the fourfold degeneracy at the $\Gamma$ point of the valence bands acts as the Yang monopole, which enhances the SU(2) non-Abelian Berry curvature.14

4Electronic mail: gyguo@phys.ntu.edu.tw.
In this paper, we study the intrinsic SHE in Pd and Au metals with first-principles band structure calculations. The band structures of Pd and Au have been calculated using a fully relativistic extension of the all-electron linear muffin-tin orbital method based on the density functional theory with local density approximation. The experimental lattice constants used for Pd and Au are 3.89 and 4.08 Å, respectively. The basis functions used are s, p, d, and f muffin-tin orbitals. In the self-consistent electronic structure calculations, 89 k points in the fcc irreducible wedge (IW) of the Brillouin Zone (BZ) were used in the tetrahedron BZ integration. The SHE is evaluated by the Kubo formula, as described in Ref. 22. A fine mesh of 60 288 k points on a larger IW (three times the fcc IW) is used. These numbers correspond to the division of the ΓX line into 60 segments (see Fig. 1).

Figure 1 shows the relativistic band structure of Pd and also the SHE (σxy) as a function of EF. Clearly, the SHE peaks just below the true Fermi level (0 eV), with a large value of ≈1400 (ℏ/ε)(Ω cm)−1. This large value of the SHE is smaller than that of Pt. Nonetheless, it is still orders of magnitude larger than the corresponding value in p-type semiconductors Si, Ge, GaAs, and AlAs. Note that the SHE in Pd decreases monotonically as the EF is artificially raised and becomes rather small above 3.0 eV. When the EF is artificially lowered, the SHE first peaks just below the EF (−0.3 eV), then decreases considerably, and changes its sign at −1.2 eV. As the EF is further lowered, the SHE increases in magnitude again and becomes peaked at −3.0 eV with a large value of −2600 (ℏ/ε)(Ω cm)−1. The SHE decreases again when the EF is further lowered and finally becomes very small below −5.0 eV. Note that the bands below −5.5 eV and above 0.5 eV are predominantly of 5s character and the effect of the SOC is small.

We notice that a peak in the SHE appears at the double degeneracies on the L and X points near EF in the scalar-relativistic band structure (i.e., without the SOC), while the other peak at −3.0 eV occurs near the double degeneracies at the L and Γ points (see Fig. 1). The double degeneracy (bands 5 and 6) at L is made mostly of dxy and dz′2−r (z′: fourfold axis), consistent with the point group D6h at L. The double degeneracy (bands 4 and 5) at X consists mainly of dz′2 and dz2−r (z′: fourfold axis), consistent with the point group D4h. These double degeneracies are lifted by the SOC, with a rather large spin-orbit splitting. As in Pt, the large SHE in Pd may be attributed to these double degeneracies.

The relativistic band structure of Au and also the SHE (σxy) as a function of EF are displayed in Fig. 2. It is clear that both the shape and the amplitude of the SHE versus EF curve [Fig. 2(b)] of Au are very similar to that of Pd [Fig. 1(b)] and Pt. This is because the band structure of Au [Fig. 2(a)] is rather similar to that of Pd [Fig. 1(a)] and Pt. However, because Au has an extra valence electron and hence its d band is completely filled, the EF falls in the broad 6s6p band, where the SOC is relatively small. As a result, the SHE in Au is relatively small at low temperatures [σxy(T=0 K) ≈400 (ℏ/ε)(Ω cm)−1], consistent with the previous ab initio calculation. Nonetheless, it is a few times larger than the SHE in semiconductors.

The SHE can be written in terms of Berry curvature Ωn(k) as

\[
\sigma_{xy} = \frac{e}{\hbar} \sum_{k} \Omega^{n+1}(k) = \frac{e}{\hbar} \sum_{k} \sum_{n} f_{kn} \Omega_{n}(k),
\]

\[
\Omega_{n}(k) = \frac{2}{\hbar} \sum_{n' \neq n} \text{Im} \langle \mathbf{k} | \mathbf{j}_{n'} | \mathbf{k} \rangle \langle \mathbf{k} | \mathbf{j}_{n'} | \mathbf{k} \rangle \left( \epsilon_{kn} - \epsilon_{kn'} \right)^{-1},
\]

(1)

where the spin current operator \( j_{n'} = \frac{1}{2} \langle s_z, v \rangle \), with spin \( s_z \) given by \( s_z = (\hbar/2) \beta \Sigma_{z} \) (\( \Sigma_{z} \): 4 × 4 Dirac matrices). The Fermi distribution function for the nth band at \( \mathbf{k} \), \( \Omega_{n}(k) \), can be regarded as an analog of the Berry curvature for the nth band and it is enhanced when other bands come close in energy (i.e., near degeneracy). The SHE for Pd and Au calculated as a function of temperature using Eq. (1) is shown in Fig. 3. Figure 3 shows that the SHE in Pd decreases substantially as the temperature (T) is raised above 100 K, although it increases with temperature below 100 K. This rather strong temperature dependence is also due to the near degeneracies since the small energy scale is relevant to the SHE there. Nevertheless, the SHE at room T \( \sigma_{xy}(T = 300 \text{ K}) = 350 (\hbar/ε)(Ω \text{ cm})^{-1} \) is still rather large. Interestingly, in contrast, the SHE in Au increases steadily with temperature to reach a value of 750 (ℏ/ε)(Ω cm)−1. This is because the EF cuts across the broad 6s6p band in Au. As a
result, the intrinsic SHC in Au at room temperature is in fact larger than that of Pd and Pt.

Excitingly, giant SHE at room temperature has been recently observed in a multiterminal device with a Au Hall cross and an FePt perpendicular spin injector. The measured $\sigma_{xy} = 10^3 \, (\frac{\hbar}{e})(\Omega \text{ cm})^{-1}$ is orders of magnitude larger than the intrinsic SHC in bulk Au reported above. This obviously indicates that the SHC due to intrinsic SOC in the band structure of pure Au is not the dominant mechanism in the Au/FePt system. Indeed, Seki et al. attributed the giant SHE to the extrinsic mechanism of the skew scattering by impurities in Au. Nonetheless, its microscopic origin remains a puzzle and is currently under intensive investigation.

The author thanks N. Nagaosa, S. Murakami, T.-W. Chen, and S. Maekawa for stimulating discussions and collaboration on spin Hall effect in metals. The author also thanks the National Science Council of Taiwan for support and NCHC of Taiwan for the CPU time.

---