Efficient syntheses of (−)-shikimate and (−)-quinate 3-phosphate via \textit{trans} vicinal diol protection with 2,2,3,3-tetramethoxybutane (TMB) of shikimic and quinic acids

Tzenge-Lien Shiha,* and Shih-Hsiung Wua,b,*

aInstitute of Biological Chemistry, Academia Sinica, NanKang 115, Taipei, Taiwan
bInstitute of Biochemical Sciences, National Taiwan University, Taiwan

Received 23 December 1999; accepted 14 February 2000

Abstract

(−)-Shikimate 3-phosphate and (−)-quinate 3-phosphate can be synthesized by selective protection of their \textit{trans} diol functionality using 2,2,3,3-tetramethoxybutane (TMB) using D-(−)-shikimic acid and D-(−)-quinic acid as starting materials. This versatile reagent facilitates the synthesis of these important biological targets in fewer steps than previously reported. By the proper choice of protecting group for C-3 hydroxyl in D-(−)-quinic acid, it can be converted to a key intermediate in the synthesis of (−)-shikimate 3-phosphate. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: shikimic acid; quinic acid; shikimate 3-phosphate; quinate 3-phosphate; 2,2,3,3-tetramethoxybutane.

The first chemical syntheses of (−)-shikimate 3-phosphate and (−)-quinate 3-phosphate were reported in 1992.1 Both of these syntheses required protection of the \textit{cis} vicinal diols at C-3 and C-4 positions, respectively. This contributed to a long synthetic route.

2,2,3,3-Tetramethoxybutane (TMB) has been used in the protection of vicinal diequatorial diols in a series of carbocycles and carbohydrates.2 Furthermore, the TMB reagent has been used to convert (−)-quinic acid into (−)-shikimic acid.3 These results prompted us to propose that the TMB could be used in the syntheses of both (−)-shikimate 3-phosphate and (−)-quinate 3-phosphate.

Our synthesis of (−)-shikimate-3-phosphate is described in Scheme 1. The \textit{trans} vicinal diol of 1\textsubscript{1a,4} was protected with TMB using the known procedure.2 However, we observed that the refluxing time affected the ratio of 2 and 3 in the product mixture. When the reaction time was 3 h, compounds 2 and 35 were isolated in 75–85% yield in a ratio of 1:5:1. When the reaction was allowed to reflux for 18 h, the mixture of compounds 2 and 3 was isolated in a ratio of 1:1,25. Prolonged reaction time (up to two days) provided 3 as the only isolated product in 77% yield. The C-3 position of 3 was phosphorylated6 to afford 47 in 72% yield. The one-step debenzylation and deprotection steps were accomplished simultaneously.

* Corresponding authors.
using bromotrimethylsilane in methylene chloride. Saponification and purification provides 5 in 76% yield. Its 1H NMR data is consistent with the reported value.1a

Scheme 1.

The synthesis of (−)-quinate 3-phosphate is outlined in Scheme 2. The C-3 position of compound 62 was phosphorylated using the same procedure as described above, providing 76 in 73% yield. Compound 7 was hydrogenated over Pd/C (in MeOH, rt, overnight)6 followed by acid hydrolysis (80% TFA, rt, 4 h).2,3 The resulting syrup was subjected to a basic workup (1N NaOH) to obtain 8 in 69% (three steps) after purification. Its 1H NMR data is also consistent with the reported value.1a

Scheme 2.

Some of our effort has focused on the syntheses of intermediates 4 and 109 from 7 and 9, respectively, using phosphorous oxychloride in pyridine10 (Scheme 3). Compounds 4 and 10 therefore served as precursors in the synthesis of (−)-shikimate 3-phosphate starting from (−)-quinic acid. In the examples of dehydration of 7 and 9, we observed that the elimination takes place exclusively opposite to the TMB protected diol, yielding 4 and 10 in 37 and 76% yields, respectively. The regioselectivity of double bond formation is consistent with that observed in the synthesis of D-(−)-shikimic acid from D-(−)-quinic acid.3a However, the isolated yield (37%) for 4 might be due to competing aromatization during the reaction since the phosphorous group may function as a leaving group. Indeed, a non-polar highly UV-active spot was observed by TLC which is not readily isolated by column chromatography. Furthermore, when the C-3 hydroxyl is protected with an acetyl group, the possibility of aromatization was eliminated, and a higher yield was obtained. The acetyl group of 10 can be further removed to prepare 3.

With this method, (−)-shikimate 3-phosphate and (−)-quinate 3-phosphate were obtained using the TMB reagent for the protection of trans vicinal diols in methyl-(−)-shikimate or methyl-(−)-quinate, respectively. This route is more direct than previous routes to these important compounds. The regioselectivity of double bond formation in the dehydration of 7 and 9 can also be controlled by this trans diol protection.
Acknowledgements

T.-L. Shih gratefully acknowledges Academia Sinica for a postdoctoral fellowship. We also wish to thank Dr. C.-C. Lin at Academia Sinica for helpful discussions and Mr. Mark L. Micklatcher at Purdue University for proofreading this manuscript.

References

4. Shikimic acid, used for the preparation of 3, was purchased from Sigma.

5. The 1H and 13C NMR data are consistent with the reported values in Ref. 3b.

7. Compound 4: pale yellow syrup. 1H NMR (CDCl$_3$, 400 MHz) δ 7.25–7.39 (m, 10H), 6.76 (dd, J=5.5, 2.6 Hz, 1H), 5.13–5.23 (m, 2H), 5.08–5.12 (m, 1H), 5.00–5.06 (m, 2H), 4.10 (dt, J=16.8, 5.9 Hz, 1H), 3.74 (s, 3H), 3.69 (ddd, J=10.9, 4.0, 1.7 Hz, 1H), 3.23 (s, 3H), 3.22 (s, 3H), 2.83 (dd, J=18.0, 6.2 Hz, 1H), 2.25 (ddd, J=18.0, 10.3, 2.8 Hz, 1H), 1.27 (s, 3H), 1.23 (s, 3H). 13C NMR (CDCl$_3$, 100 MHz) δ 166.1, 136.2, 133.3, 132.0, 128.4, 128.3, 128.2, 127.9, 127.7, 99.9, 99.1, 70.9, 70.8, 69.4 (\times2), 69.2 (\times2), 62.4, 52.2, 48.1, 47.9, 30.3, 17.8, 17.7. LRMS (m/z) 562.9 (M$^+$, 95%), 531.1 (M$^+$−OMe, 100%).

8. Compound 7: white solid. Mp 103–105°C. 1H NMR (CDCl$_3$, 400 MHz) δ 7.25–7.40 (m, 10H), 5.17 (t, J=6.4 Hz, 2H), 5.08 (dd, J=7.6, 4.3 Hz, 2H), 4.92 (dd, J=7.7, 2.9 Hz, 1H), 4.36 (ddd, J=14.8, 10.3, 4.6 Hz, 1H), 3.75 (s, 3H), 3.62 (dt, J=10.3, 2.6 Hz, 1H), 3.31 (brs, 1H), 3.23 (s, 3H), 3.19 (s, 3H), 2.21 (dt, J=15.5, 2.8 Hz, 1H), 1.98–2.12 (m, 2H), 1.93 (t, J=13.0 Hz, 1H), 1.25 (s, 3H), 1.23 (s, 3H). 13C NMR (CDCl$_3$, 100 MHz) δ 175.0, 136.3, 136.0, 128.5, 128.4, 128.3, 128.1, 127.8, 127.7, 100.2, 99.5, 74.7, 74.6, 74.5, 71.6, 69.3, 69.2, 62.2, 48.0, 47.9, 38.8, 37.9, 17.9, 17.6. LRMS (m/z) 580.9 (M$^+$, 75%), 549.1 (M$^+$−OMe, 100%).

9. Compound 10: pale yellow syrup. 1H NMR (CDCl$_3$, 400 MHz) δ 6.80 (dd, J=5.0, 2.3 Hz, 1H), 5.53 (t, J=5.0 Hz, 1H), 4.07 (dd, J=16.7, 10.5, 6.0 Hz, 1H), 3.74 (s, 3H), 3.69 (dd, J=10.9, 4.4 Hz, 1H), 3.25 (s, 3H), 3.23 (s, 3H), 2.83 (dd, J=17.9 Hz, 6.0 Hz, 1H), 2.26 (ddd, J=17.9, 10.4, 2.8, 0.9 Hz, 1H), 2.07 (s, 3H), 1.28 (s, 3H), 1.25 (s, 3H), 1.23 (brs, 1H). 13C NMR (CDCl$_3$, 100 MHz) δ 170.4, 166.3, 133.3, 132.2, 99.7, 99.1, 68.8, 66.1, 62.9, 52.2, 48.0, 47.9, 30.0, 20.9, 17.8, 17.6.