Silicon—germanium spherical quantum dot infrared photodetectors prepared by the combination of bottom-up and top-down technologies

Tse-Chi Lin and Si-Chen Lee
Department of Electrical Engineering and Graduate Institute of Electronic Engineering, National Taiwan University, Taipei, Taiwan, Republic of China

Hung-Hsiang Cheng
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan, Republic of China

(Received 17 April 2003; accepted 17 November 2003; published 14 January 2004)

By combining a bottom-up, i.e., thermal evaporation method, and the top-down technologies, i.e., molecular beam epitaxy, the spherical SiGe quantum dot infrared photodetectors (QDIP) have been successfully fabricated for the first time. The thermal evaporation method was chosen to synthesize spherical SiGe nanoparticles. They are treated with methanol containing alumina powders in the ultrasonic bath to form a single SiGe dot layer with density about $1.6 \times 10^{11}$ cm$^{-2}$. The QDIP exhibits two response regions, i.e., 1–3.5 and 14–20 μm. The peak responsivity of QDIP is 5.4 mA/W at 2 μm and about 0.6 mA/W at 17 μm at a bias of 200 mV. This QDIP also exhibits photovoltaic response, a short circuit current exists at zero bias. This device is capable of operating up to 240 K with good performance. © 2004 American Vacuum Society.

[DOI: 10.1116/1.1641059]

I. INTRODUCTION

The electronic and optical properties of nanoparticles are very different from those of traditional materials, nanotechnology which utilizes these nanoparticles has become one of the most active research fields in the world.$^{1-5}$ Two different classes of techniques which have few common goals are used to produce nanoparticles. One is a “top-down” technique and the other is a “bottom-up” process. The top-down approach adopted by the device experts is a make-small-from-large process which produces nanoparticles from planar growth and fabrication techniques including electron-beam lithography,$^{6}$ the pattern-dependent oxidation method,$^{7,8}$ molecular beam epitaxy (MBE),$^{9}$ and so on. The nanoparticles are embedded in the heterojunction structure to facilitate the electronic and optoelectronic devices. The bottom-up approach adopted by the chemists and materialists is a make-large-from-small process which synthesizes nanoparticles from constituent atoms including chemical precipitation,$^{10}$ the sol-gel process,$^{11}$ thermal evaporation,$^{12,13}$ chemical vapor deposition (CVD),$^{14,15}$ laser ablation,$^{16}$ sputtering,$^{17,18}$ and so on. And then assemble these nanoparticles to form larger structure. They can be used in various areas including structural, chemical, biological, and optical applications except electrical and optoelectronic devices. In this article, we demonstrate the feasibility of combining the bottom-up, i.e., the thermal evaporation method, and the top-down technologies, i.e., MBE, to fabricate optoelectronic device, i.e., spherical silicon germanium (SiGe) quantum dot infrared detector.

In the area of Si/Si$_1-x$Ge$_x$ optoelectronics, photodetectors are the most advanced and widely deployed devices. Similar to the case of quantum well infrared photodetectors or superlattice infrared photodetector, quantum dot infrared photodetectors (QDIP) is one of the promising candidates for semiconductor devices based on zero-dimensional quantum structures. Quantum dot detectors have advantages such as a long intersubband relaxation time due to a reduced electron-phonon interaction, low dark current, and high temperature operation.$^{19}$ In addition, unlike a quantum well, quantum dots are sensitive to normally polarized incident photons due to the breaking of the polarization selection rule.$^{20}$

II. EXPERIMENT

The source of silicon and germanium powders are separately loaded into the respective tantalum (Ta) boats in the vacuum evaporation chamber. Individual power supplies are adjusted to control the temperatures of the Ta boats and provide different evaporation rates. The distance between the substrate and the source can be set from 8 to 13 cm.

Before the growth, Si wafer must be dipped in diluted HF for 10 s in order to clean the native oxide. After loading the sample, the chamber was evacuated to $5 \times 10^{-5}$ Torr and purged with argon (Ar) gas, this process was repeated three times to reduce the residual water vapor and oxygen. Finally, the chamber was filled with Ar gas at a fixed pressure and liquid nitrogen was filled into the cold trap. Then each boat was supplied with a different current through an individual power supply to control its temperature. After the desired currents were reached, it was kept about 15 s to let the system stabilize. Then, the shutter in front of the substrate was opened for about 1 min to let the SiGe alloy nanoparticles already synthesized in the gas phase to land on the substrate.

The SiGe dots deposited on the silicon substrate are clusters which must be treated with methanol in the ultrasonic bath to form a single layer of SiGe dots. High density and selectivity of the SiGe dots are two important factors that enhance the performance of the QDIP.

There are two kinds of methods to prepare a single layer of SiGe dots with high density. The first is to creat a substrate with rough surface by reactive ion etching (RIE) be-

---

*a)Electronic mail: sclee@cc.ee.ntu.edu.tw
fore depositing the SiGe alloy dots. The second is to treat the nanoparticles with methanol in the ultrasonic bath, and further, alumina ($\text{Al}_2\text{O}_3$) powders are added into methanol as a grinder. Here, the methanol treatment procedure was that 100 mL methanol in a 500 mL beaker was prepared, a sample covered with deposited SiGe dots was immersed into the methanol. Then the sample was rinsed in the ultrasonic bath for 10 s. After rinsing, the substrate was dipped into (de-
ionized) wafer several times to clean methanol, and finally, blow it dry with nitrogen gas. Atomic force microscope (AFM) images and scanning electron microscope images were used to measure the density and the size uniformity of a single SiGe dots layer from methanol treatment, RIE treatment, and alumina treatment, respectively, as shown in Figs. 1a, 1b, and 1c. Based on transmission electron microscope (TEM) image analysis, the dot densities are 9.1 × 10^9, 2.7 × 10^10, and 1.6 × 10^11/cm^2, respectively. The size distribution are 11.8 ± 3.8, 13.6 ± 3.8, and 10.5 ± 3.4 nm, respectively. The AFM measurement gives a smaller dot density and larger size distribution due to the finite size of AFM tip. They are not as accurate as the TEM analysis.

The schematic illustrations of these treatments are shown in Figs. 2(a), 2(b), and 2(c), respectively. Since the SiGe alloy dots have a spherical shape, the contact area between dot and substrate is minimum. If the dots were bathed by methanol in the ultrasonic without being treated with RIE or aluminum oxide, the dots were dispersed from the substrate. In order to increase the contact area between dot and substrate, RIE treatment was used which resulted in increasing roughness of the substrate and led to a high density and size uniformity single SiGe dot layer. The alumina treatment is another way to achieve a high dot density in a single layer, which focused on breaking the aggregate of SiGe dots. In alumina treatment, weigh out about 3 g of alumina powder with 0.3 μm diameter and then dissolve it in 100 mL methanol in a 500 mL beaker. The alumina treatment procedures are similar to those of methanol treatment procedure.

Figure 3 displays the schematic fabrication processes of the SiGe alloy nanoparticle device. A 600 nm P^+-type boron doped Si (10^19/cm^3) and then 300 nm undoped Si (i-Si) layer was grown sequentially on a (001) oriented 5 Ω cm P-type boron doped Si substrate at 600 °C by MBE. SiGe alloy nanoparticles were deposited on these samples by the thermal evaporation method as described previously. The QDIP R70 was treated by the RIE process to etch the i-Si layer from 300 to 30 nm and to roughen the surfaces of R70. The evaporation of the SiGe nanoparticles was under 1 Torr argon pressure with applied currents of 120 and 100 A to the Si boat and the Ge boat, respectively. The Ge content of the Si$_1-x$Ge$_x$ was estimated to be 0.8. After SiGe dots were deposited, this device was treated by methanol. An i and P^+-type boron doped Si layer (10^19/cm^3) were then grown
on top of SiGe dots by MBE at respective 400 and 550 °C. Infrared photodetectors were fabricated.

For the measurements of temperature-dependent dark and light $I–V$ characteristics, a 100 $\mu$m × 100 $\mu$m mesa structure was patterned by standard photolithography. Ti and Au were deposited on the top $p$-type Si layer, then annealed at 450 °C for 3 min to form ohmic contacts. For the measurement of spectral responsivities, the Si substrate was 45° polished and an edge-coupling scheme was adopted. The device contact was bonded with Au wire to a graphite chip where the device was mounted. During the dark $I–V$ measurements, the QDIP R70 was put on the holder covered by inner-shielding cylinder, then masked by the outer aluminum cylinder to shield the ambient light. During the ambient background 800 K radiation measurements, an infrared window was used to filter out the visible light.

III. RESULTS AND DISCUSSION

Figure 4(a) displays the dark $I–V$ characteristics of QDIP R70 measured at 20, 50, 100, and 150 K, respectively. The photocurrent was measured at 20 K under the illumination of 800 K blackbody radiation. An open circuit voltage $V_{oc}$ was observed at zero current which indicates a photovoltaic response. As infrared radiation passes through the detector, it is absorbed and gives the holes enough energy to jump to the Si valance band (VB) from the quantum dots. This generates holes in the valence band and also contributes to photoconduction. The open circuit voltage $V_{oc}$ as a function of temperature under the illumination of 800 K blackbody radiation is shown in Fig. 4(b). While the temperature was at 20 K, $V_{oc}$ was about 140 mV. And it decreased linearly when the temperature was rising. A possible reason is that the strain field in the upper undoped and $P^+$ Si layers results in an asymmetric heterojunction which leads to a special electric field in the device. When a hole was excited to jump out of the dot, it was driven by this electric field to one electrode, which caused a photovoltaic response. As shown in Fig. 4(a), this QDIP would have a better performance while operated at a low bias.
Subtracting dark current from photocurrent obtained under 800 K blackbody radiation through the window at 20 K was the net photocurrent. Figure 5 displayed the net photocurrent as a function of biases. There are four distinct regions: (a) low response region, (b) saturation region, (c) avalanche region, and (d) negative differential conductance (NDC) region. At the (a) low response region, i.e., \(-0.2 \text{ V} \leq \text{bias} \leq -0.1 \text{ V}\), the measured photocurrent increases with bias rapidly. When the bias voltage exceeds \(-0.1 \text{ V}\), the responsivity turns into (b) saturation region. The photocurrent increases slightly from \(-0.1 \text{ to } 0.4 \text{ V}\). After saturation, an (c) avalanche multiplication process occurs when the photoexcited holes are subjected to high electrical fields. The holes resided in the dots can then be excited out of the dot via Coulomb interaction and then these additional holes can cause further impact ionization, and avalanche multiplication occurs. The activation energy for current conduction can be obtained from dark \(I-V\) characteristics as a function of temperature. At high temperature (above 150 K) and low bias (below 0.3 V), dark current consists of mostly thermionic emission current. The thermionic emission current is expressed as \(I_d = A^*T^2e^{-E_a/kT}\) where \(A^*\) is the Richardson constant, \(T\) is the temperature in Kelvin, and \(E_a\) is activation energy which equals to \((\Delta E_v-E_F)\). \(\Delta E_v\) is the valence-band discontinuity and \(E_F\) is the Fermi level. Under different biases, the slope of \(I_d/T^2\) vs \(1/kT\) is obtained and then the derived activation energies are plotted as a function of different biases in Fig. 5(b). The fitting result of the activation energy at zero bias is 133 meV.

Figure 6(a) shows the responsivity of the QDIP R70 measured at 20 K under 800 K blackbody radiation. The positive voltage means the bias is applied to the top surface of the device. There are two distinct response regions. The peak responsivity is 4.2 mA/W at a wavelength region from 1 to 3.5 \(\mu\text{m}\) which is stronger than the peak responsivity of 0.67 mA/W in the region from 13 to 20 \(\mu\text{m}\). Under the spherical quantum dot approximation, energy levels are calculated according to the average size \(\sim 8.6 \text{ nm}\) of quantum dots. Here, we assume the valence band offset \(\Delta E_v\) is 0.76 eV. When the SiGe dots are treated with the strong strain, the large valence band offset could be accepted. There are five kinds of transition in this model. LH+SO→VB, SO→LH–VB, HH_0→HH_1, HH_0→VB, and then HH_1→VB as shown in Fig. 6(b). HH means heavy hole, LH means light hole.
insensitivity but there is some dependence between 0 and 2.5 μm. In order to estimate the performance of quantum dot infrared photodetector, specific detectivity \(D^*\) is used for standard comparison. The specific detectivity \(D^*\) under different biases at 20 K is shown in Fig. 8(a). At zero bias, the specific detectivity \(D^*\) is 4.04×10\(^{10}\) cm Hz\(^{1/2}\)/W. As the bias increases, the specific detectivity \(D^*\) would decay to 1.7×10\(^{8}\) cm Hz\(^{1/2}\)/W at 0.7 V. Figure 8(b) shows the specific detectivity as a function of temperature at zero bias. The specific detectivity decreases as the temperature rises. Although the detectivity decreases rapidly, the spectral response at 240 K is still strong, i.e., 0.47 mA/W, but the response region changes to a longer wavelength.

IV. CONCLUSIONS

Based on the combination of bottom-up thermal evaporation method and combine the top-down MBE technique a SiGe QDIP was fabricated successfully. Treating the SiGe dots on a Si wafer with a methanol bath produces a single SiGe dot layer. This study brings up three different methods of treatment. Methanol, RIE, and alumina treatment lead to the dot densities of 9.1×10\(^4\), 2.7×10\(^5\), and 1.6×10\(^5\) cm\(^{-2}\), respectively. A conceptual model about the contact between dot and substrate is brought out. The transmission electron microscopy image of QDIP R70 shows the structure is under severe strain.

The characteristics of QDIP were analyzed by responsivity, detectivity, and dark and light current measurements. The QDIP R70 with symmetric structure exhibits a photoreponse. The treatment method of R70 is RIE treatment. The response of the QDIP R70 shows that there are five distinct transitions, i.e., HH\(_0\)–VB, HH\(_0\)–HH\(_1\), HH\(_1\)–VB, (LH + SO)\(_0\)–VB, and (SO + LH)\(_0\)–VB. The peak responsivity is 4.2 mA/W at a wavelength region from 1 to 3.5 μm which is stronger than the peak responsivity of 0.67 mA/W in the region from 13 to 20 μm. The high specific detectivity \(D^*\) achieved is 5.0×10\(^{10}\) cm Hz\(^{1/2}\)/W under zero bias. This QDIP R70 is capable of operating up to at 240 K with a good performance. This QDIP R70 also achieves TE/TM polarization insensitivity.

ACKNOWLEDGMENT

This work was supported by National Science Council of the Republic of China under Contract No. NSC 90-2215-E-002-014.