Cr4+:YAG double-clad crystal fiber laser

Chien-Chih Lai,1 Hann-Jong Tsai,2 Kuang-Yao Huang,1 Kuang-Yu Hsu,1 Zhi-Wei Lin,2 Kuan-Dong Ji,2 Wen-Jun Zhuo,2 and Sheng-Lung Huang1,3,*

1Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
2Department of Photonics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
3Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan

*Corresponding author: slhuang@cc.ee.ntu.edu.tw

Received September 8, 2008; revised October 30, 2008; accepted October 31, 2008; posted November 10, 2008 (Doc. ID 101293); published December 4, 2008

We report what we believe to be the first demonstration of a room-temperature, continuous-wave Cr4+:Y\textsubscript{3}Al\textsubscript{5}O\textsubscript{12} (Cr4+:YAG) double-clad crystal fiber laser grown by the codrawing laser heated pedestal growth method. The threshold is below 100 mW, which is a factor of 4 lower than previously reported Cr4+-doped lasers. A slope efficiency of 6.9\% was obtained, and is in good agreement with the numerical simulation. In addition to small core diameter, the low-threshold lasing is made possible by the low propagation loss of 0.08 dB/cm and the high crystallinity of the core. © 2008 Optical Society of America

OCIS codes: 140.3460, 140.3510, 160.6990.

Cr4+:YAG double-clad crystal fiber laser

Chromium-ion-doped laser gain media have a broadband nature because of the nonscreened electronic configurations. For future ultrabroadband fiber communication systems, a broadly tunable laser is essential to offer wavelength-on-demand, dynamic wavelength ports, and simplified inventory managements. Among all the Cr4+-doped gain media, Cr4+:Y\textsubscript{3}Al\textsubscript{5}O\textsubscript{12} (Cr4+:YAG) has shown a high concentration of tetrahedrally coordinated Cr4+ ions and a high emission cross section in fiber communication bands [1–4], although most reports of bulk Cr4+:YAG lasers showed lasing actions at low temperature [1,5–8] or with rather high thresholds from 0.4 to 4 W. The threshold pump power increases as the bulk temperature rises owing to the decrease in fluorescence lifetime. The fiber waveguide offers better heat dissipation because of the high surface-to-volume ratio of the gain medium [9,10]. Of particular importance, with Cr4+:YAG as the core and silica as the cladding, it has been shown that the near-infrared (NIR) ultrabroadband emission from 1.1 to 1.6 \textmu m generated by the core can be easily guided owing to the large fractional index change at the core–inner-clad interface [3,4]. Here we show the first demonstration of a Cr4+:YAG double-clad crystal fiber (DCF) laser grown by the codrawing laser heated pedestal growth (CDLHPG) method with a lasing threshold of 96 mW and a slope efficiency of 6.9\% at room temperature (RT) operation.

The sample was initially prepared from a 0.5 mol. \% doped Cr4+:YAG source rod in [111] crystal orientation. With two diameter reduction steps by the laser-heated pedestal growth (LHPG) method, a 68 \mu m Cr4+:YAG core was grown and then inserted into a fused silica capillary with 76 and 320 \mu m inner and outer diameters for the codrawing process by the same LHPG system to form a Cr4+:YAG DCF. The as-grown Cr4+:YAG DCF was placed inside a Cu holder, followed by impregnating with melting Al at 780 °C to form a Cu–Al alloy. The compositions profile and microstructure of the Cr4+:YAG DCF were then examined by an electron probe microanalyzer (EPMA, JEOL JXA-8900R) and a field-emission high-resolution transmission electron microscopy (HRTEM, Tecnai G2 F20, FEI). The refractive index and Cr4+ fluorescence were measured by a homemade multiwavelength confocal microscope using a 635 nm distributed feedback laser and a 1064 nm cw Yb: fiber laser as excitations.

Figure 1 shows a polished end face of a Cr4+:YAG DCF mounted in the Cu–Al alloy together with the corresponding line-scan composition profiles. The core, inner-, and outer-clad diameters are 20, 93, and 320 \mu m, respectively. A tremendous amount of Cu and Al ions diffuse into the inner-clad edge to form a Cu–Al alloy diffusion layer, showing the original SiO\textsubscript{2} outer cladding was entirely impregnated by the Cu–Al alloy, as presented in the left side of Fig. 1. This implies that the heat generated inside the DCF...
can be removed to improve the DCF laser performance at RT. The image in the right side of Fig. 1 is an [111] HRTEM image taken in the core region. The inset shows the corresponding selected area electron diffraction (SAED) pattern, and the sharp bright diffraction spots demonstrate that the core region has a nearly perfect YAG single crystal structure grown by the CDLHPG method, as confirmed by a measured lattice parameter $a = 12.008$ Å (Joint Committee on Powder Diffraction Standards file 33-0040). Figures 2(a) and 2(b) show the corresponding refractive index and Cr$^{4+}$ fluorescence mappings of Cr$^{4+}$:YAG DCF end face in Fig. 1. Figure 2(c) shows the refractive index profile of the inner cladding, corresponding to the SiO$_2$ concentrations from 15 to 20 wt. %. The refractive index of the core is 1.82, which is about the same as that of a single crystal YAG. The refractive index of the outer cladding is from 2.2 to 2.4, resulting from the Cu–Al alloy with 20 wt. % CuO and 80 wt. % Al$_2$O$_3$. The fluorescence distributions in Figs. 2(b) and 2(c) show that the majority of the Cr$^{4+}$ fluorescence is concentrated within the core region, whereas the inner cladding region has negligible fluorescence.

To investigate the lasing behavior of the Cr$^{4+}$:YAG DCF, a 16.5 mm long DCF was prepared. A cw Yb-fiber laser at 1064 nm was initially focused by a 10× objective and then coupled into a standard single-mode telecommunication fiber (SMF-28) followed by an optical spectrum analyzer. The SMF-28 fiber that carried the pump beam was butt-coupled to the core of the Cr$^{4+}$:YAG DCF through a dichroic-coated front face. The DCF laser output and the pump beam were collimated by a 10 mm achromatic lens and further filtered by a long-wavelength pass filter before been detected by a photodetector. The lasing characteristics of the Cr$^{4+}$:YAG DCF lasers for two different output couplers are shown in Fig. 3. The threshold power increases from 69 to 96 mW when increasing the output coupler transmission from 2.5% to 3.8%. More than 10 mW of output power was achieved, and the slope efficiencies are 3.4% and 6.9% for $T = 2.5\%$ and 3.8%, respectively. At RT the 69 mW threshold power and 6.9% slope efficiency are among the record-low threshold and record-high slope efficiency reported for cw pumped Cr$^{4+}$:YAG lasers (bulk or fiber). The inset of Fig. 3 shows the lasing spectrum at 1421.16 nm with a side mode suppression ratio (SMSR) of 50 dB. Note that the 3 dB laser linewidth is less than 0.1 nm, which is limited by the resolution of the detection system.

To further extract parameters from the experimental data in Fig. 3, a simulation based on a four-level Cr$^{4+}$:YAG model was conducted. Using a lumped model, the upper-level population density, N_2, and the intracavity photon intensity, I_c, can be expressed as [11,12]

$$\frac{dN_2(t)}{dt} = \frac{\sigma_p \lambda_p I_p}{hc} N_g(t) - \frac{\sigma_e \lambda_L I_c(t)}{hc} N_2(t) - \frac{N_2(t)}{\tau_f},$$

(1)

$$\frac{dI_c(t)}{dt} = \frac{c}{n_g} (\sigma_e - \sigma_{el}) N_2(t) - \frac{c}{2n_g L_g} [1 - \{R_1 R_2 \exp(-2\sigma_p L_g)\}]$$

$$- \frac{c}{2n_g L_g} [1 - \{R_1 R_2 \exp(-2\sigma_p L_g)\}] - \frac{\alpha_p}{n_g L_g} I_c(t)$$

(2)

where the pump intensity

$$I_p = P_{in} \eta_n \exp(-\alpha_p L_g)[1 - \exp(-\alpha_p L_g)]/\pi r^2.$$

(3)

In Eqs. (1)–(3), λ_p, λ_L, σ_p, σ_e, and N_g are the pump and lasing wavelength, the pump and emission absorption cross sections, and the electron density of the ground state, respectively. τ_f, h, and c are the...
temperature-dependent lifetime, the Planck’s constant, and the speed of light in vacuum. $\eta_L, L_g, R_1,$ and $R_2,$ are the refractive index of the Cr$^{4+}$:YAG DCF core, the crystal fiber length, and the respective input and output coupler reflectances. $\alpha_{\text{abs}}^{\text{pump}}$ and $\alpha_{\text{abs}}^{\text{ ESA}}$ are the propagation loss at λ_g and $\lambda_L, P_{\text{in}}, \eta_{\text{in}},$ and r represent the incident pump power, the input pump coupling efficiency, and the mode radius of the Cr$^{4+}$:YAG DCF. $\sigma_{\text{abs}}^{\text{ESA}}$ and α_{p0} are the excited-state absorption cross section at λ_L and the small-signal absorption coefficient at $\lambda_p.$

The absorbed pump power P_{abs} is estimated by accounting the input and output pump coupling efficiency, η_{in} and $\eta_{\text{out}},$ pump light propagation loss, and excited state absorption cross section $\sigma_{\text{abs}}^{\text{ESA}}$ at $\lambda_p.$ It can be expressed as follows:

$$P_{\text{abs}} = P_{\text{in}}(1 - \eta_{\text{in}} \exp[-(\sigma_{\text{abs}}^{\text{pump}} N_g + \sigma_{\text{abs}}^{\text{ ESA}} N_2 ^{\text{pump}}) L_g]) \cdot \eta_{\text{out}}.$$

(4)

The extracted best-fit values of σ_{abs} and σ_e are 5.9×10^{-22} and 6.0×10^{-23} m2; $\sigma_{\text{abs}}^{\text{ESA}}$ and $\sigma_{\text{abs}}^{\text{ESA}}$ are 2.1×10^{-22} and 3.15×10^{-23} m2; $\eta_{\text{in}}, \eta_{\text{out}},$ and η_r are 85%, 64%, and 3.75 ms; $\alpha_{\text{p0}}, \alpha_{\text{abs}}^{\text{pump}},$ and $\alpha_{\text{abs}}^{\text{ ESA}}$ are 1.0 cm$^{-1},$ 0.65 dB/cm, and 0.08 dB/cm; and $r, L_g,$ and η_g are 9.5 μm, 1.65 cm, and 1.82, respectively. These values are in good agreement with those obtained from Cr$^{4+}$:YAG bulk lasers [6,13–17]. Based on the extracted parameters, the slope efficiencies in terms of the crystal fiber length and output coupler reflectance are shown in Fig. 4. A mode radius r of 9.5 μm and α_{p0} of 1.5 cm$^{-1}$ with η_{in} of 99% and η_{out} of 1% at λ_p and R_1 of 99% at λ_L are employed in the simulations. A 10.6 cm Cr$^{4+}$:YAG DCF with a 42.4% output reflectance is computed for the maximum η_{in} of \sim50% with a 95 mW threshold at 20 °C. The simulation results indicate that the crystal fiber length is an essential factor to the laser efficiency.

In conclusion, Cr$^{4+}$:YAG crystal fiber laser with a double-clad structure has been successfully developed. The 69 mW threshold is the lowest, and the 6.9% slope efficiency is the highest as compared with previous bulk or fiber Cr$^{4+}$:YAG lasers at RT. The performance of this Cr$^{4+}$:YAG DCF laser can be further improved by optimizing the output coupler transmittance and crystal fiber length. This laser is a compact and low-cost solution for the NIR wavelength region.

The authors would like to express their sincere appreciation to T. Y. Chang, who just passed away in 2007, for helpful discussions and support. We also gratefully thank L. C. Wang for conducting HRTEM experiments. This work is partially supported by the Ministry of Economic Affairs, Taiwan under grant 95-EC-17-A-07-S1-025 and Aim for Top University Project from the Ministry of Education, Taiwan.

References