Generalized Punctured Convolutional Codes

Bartolomeu F. Uchoa-Filho, Richard Demo Souza, Cecilio Pimentel, and Mao-Chao Lin

Abstract—This letter introduces the class of generalized punctured convolutional codes (GPCCs), which is broader than and encompasses the class of the standard punctured convolutional codes (PCCs). A code in this class can be represented by a trellis module, the GPCC trellis module, whose topology resembles that of the minimal trellis module. The GPCC trellis module for a PCC is isomorphic to the minimal trellis module. A list containing GPCCs with better distance spectrum than the best known PCCs with same code rate and trellis complexity is presented.

I. INTRODUCTION

A CONVOLUTIONAL code can be represented by a semi-infinite trellis consisting, after a short transient, of concatenated copies of a topological structure called trellis module. A trellis module \(M \) for a rate \(R = k/n \) (i.e., a \((n,k)\)) convolutional code \(C \) consists of \(n' \leq n \) trellis sections (from depth 0 to depth \(n' \)), \(2^{v_1} \) states at depth \(t \), \(2^{v_2} \) edges emanating from each state at depth \(t \), and \(l_t = 1 \) for all \(t \). Since a low-complexity Viterbi decoder is desirable, we adopt henceforth the trellis complexity of \(M \), \(TC(M) \), as the trellis complexity of the convolutional code \(C \).

In this letter, we search for good (in a distance spectrum sense) \((n,k)\) convolutional codes with fixed \(TC(M) \). It appears that a convolutional code search taking this measure of complexity has only been considered in the literature by Tang and Lin [4]. The convolutional codes they found, all of which of rate \((n,n-1)\), had better weight spectrum or decoding complexity than the PCCs in [2]. Herein, we aim at finding convolutional codes better than PCCs for other code rates as well. To achieve this goal, we introduce a sufficiently broad class of convolutional codes, the generalized punctured convolutional codes (GPCCs), which encompasses the class of PCCs. A code in this class can be represented by a trellis module — the GPCC trellis module \((\hat{M}_{GPCC})\) — that shares all of the topological characteristics of the minimal trellis, except possibly the minimality property. It will be shown that many of the \((n,n-1)\) codes found in [4] are GPCCs. Moreover, it is possible to define a template for the scalar generator matrix \(G_{scalar} \) of the GPCC which yields naturally to the minimal-span form [1], allowing the predetermination of the value of \(TC(M) \) for an ensemble of GPCCs.

II. GPCCS

A \((n,k)\) GPCC is a time-varying convolutional code of period \(n \) defined by the binary generator scalars \(g_{i,t} \), where \(t = 0, 1, \ldots, n-1 \) is a phase index and, for each fixed \(t \), \(i = 0, 1, \ldots, \hat{v}_t \), where \(\hat{v}_t \) is the memory order at phase \(t \), with the following restrictions:

- \(g_{0,t} = 0 \) for all \(t \in J \), and \(g_{0,t} = 1 \) for all \(t \in I \setminus J \), where \(J \) is some subset of size \(n-k \) of the set \(I = \{0, 1, \ldots, n-1\} \);
- \(\hat{v}_{t+1} \leq \hat{v}_t + 1 \), for \(t = 0, 1, 2, \ldots, n-2 \), and \(\hat{v}_0 \leq \hat{v}_{n-1} + \hat{v}_{n-1} \), where \(\hat{b}_t = 0 \) if \(t \in J \), and \(\hat{b}_t = 1 \) if \(t \in I \setminus J \).

Arranged in the “matrix module” (a vertical slice in \(G_{scalar} \) corresponding to one trellis module [1, eq. (2.4)]), the generator scalars are seen as (only the non-zero rows are shown):

\[
\begin{bmatrix}
 g_{0,0} & \cdots & g_{0,p-1} \\
 g_{1,0} & \cdots & g_{1,p} & g_{1,p+1} \\
 g_{2,0} & \cdots & g_{2,p} & g_{2,p+1} & \cdots \\
 \vdots & \ddots & \vdots & \vdots & \ddots \\
 g_{n-1,0} & \cdots & g_{n-1,p} & g_{n-1,p+1} & \cdots & g_{n-1,n-1} \\
 g_{0,n-1} & g_{1,n-1} & \cdots & g_{2,n-1} & \cdots & g_{n-1,n-1}
\end{bmatrix}
\]
where we have considered that $p \in J$. The lack of information ($\tilde{b}_p = 0$) at phase p causes a “leap” in (1), and g_0^{p+1} is placed to the right of g_0^p (and not following the diagonal, as usual).

The GPCC trellis module (M_{GPCC}) for a rate (n,k) GPCC has state complexity profile (obtained by examining the columns of (1)) $\tilde{\nu} = \{\tilde{\nu}_0, \tilde{\nu}_1, \ldots, \tilde{\nu}_{n-1}\}$, branch complexity profile $\tilde{b} = \{\tilde{b}_0, \tilde{b}_1, \ldots, \tilde{b}_{n-1}\}$, and a single bit (i.e., $t_i = 1$) labeling each edge for all $t \in I$. The bit value at depth t is obtained from (1) in the usual way. The restrictions defined previously were imposed to avoid unreachable states in the GPCC trellis module. The trellis complexity of M_{GPCC} is given by:

$$TC(M_{\text{GPCC}}) = \frac{1}{T} \sum_{t=0}^{n-1} 2^{\tilde{\nu}_t + \tilde{b}_t}$$

symbols per bit.

We now show that the PCCs form a subclass of the GPCCs. Consider for simplicity a $((n,k),\nu)$ PCC with memory ν where $k > n/2$. It is shown in [6] that this PCC can be obtained by puncturing a rate $1/n$ time invariant convolutional code of memory ν or, equivalently, a rate $1/2$ periodically time-varying convolutional code (PTVCC) of period k and memory ν. Assuming the latter case, then, for the punctured phases, the generator sub-matrices of the PCC are of the form $G_i = [G_i(1) \; x]$, where x represents a punctured output, and, for the non-punctured phases, $G_i = [G_i(1) \; G_i(2)]$. The generator scalars of the GPCC are obtained as follows. Let u_t denote the number of non-punctured phases in the PTVCC occurring prior to phase t. By convention, $u_0 = 0$. Then, for $0 \leq t \leq k - 1$, set $g_{t+u_t} = G_i(1)$ and, if the t-th phase is non-punctured, then also set $g_{t+u_t+1} = G_i(2)$. The state and branch complexity profiles of M_{GPCC} for this PCC are given as follows. For $0 \leq t \leq k - 1$, set $\tilde{\nu}_{t+u_t} = \nu$, $\tilde{b}_{t+u_t} = 1$ and, if the t-th phase is non-punctured, then also set $\tilde{b}_{t+u_t+1} = 1$. From the construction of the minimal trellis module [1], we can see that the state complexities of M_{GPCC} and M coincide, i.e., $\tilde{\nu}_t = \nu_t$ for all t. According to a property of the minimal trellis for block codes (see, for instance, [5, Theorem 4.26]), which can be adapted to convolutional codes, the equality above for all t implies that the two trellis modules are isomorphic. Moreover, for $\tilde{\nu}$ and $\tilde{\nu}$ as defined above, the summation in (2) becomes $n \cdot 2^{\nu + 1}$. Therefore, for any PCC, M_{GPCC} is isomorphic to \tilde{M}, and $TC(\tilde{M}) = TC(M_{\text{GPCC}}) = TC(M_{\text{PCC}})$.

III. CODE SEARCH RESULTS

In order to find good GPCCs, we first calculated the value of $TC(\tilde{M})$ for the existing PCCs [2]. We then proposed templates for G_{scalar} of GPCCs. By placing in this matrix 0’s and 1’s in specific positions, while the others were set free to assume any binary value, we could define ensembles of GPCCs with the same $TC(\tilde{M})$ as for the existing PCCs.

As an example, consider the best (5,3) PCC with $\nu = 4$, found by an exhaustive search in [2]. This code has $d_f = 6$ and distance spectrum $18,0,139,0,1210,\ldots$. The state complexity profile of the GPCC trellis module for this PCC is $\tilde{\nu} = (4,4,5,4,5)$, and the branch complexity profile $\tilde{b} = (1,1,0,1,0)$. Since this code is a PCC, by the property presented at the end of Section II we have that $\tilde{\nu} = \tilde{\nu}$ and $\tilde{b} = \tilde{b}$. So $TC(\tilde{M}) = 53.33$ symbols per bit. To exemplify our code search, consider the following template for the “matrix module” of a (5,3) GPCC with state and branch complexity profiles of the GPCC trellis module $\tilde{\nu} = (4,4,5,4,5)$ and $\tilde{b} = (1,1,0,1,0)$:

$$G_{\text{mod}} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We can perform row operations on (4). Let $[\kappa]$ denote the κ-th row of a matrix, where $\kappa = 1, 2, \ldots$. Performing $[3\kappa] = [3\kappa] + [3\kappa + 2]$, we turn G_{mod} in (4) into a GPCC form. We thus have a GPCC whose GPCC trellis module has state complexity profile $(4,4,5,4,5)$ and branch complexity profile $(1,1,0,1)$, satisfying the topological restrictions. Note that this code is not a PCC, and has distance spectrum better than that of the best PCC of the same rate and trellis complexity.
Table I

Some Good Generalized Punctured Convolutional Codes

<table>
<thead>
<tr>
<th>R</th>
<th>ν</th>
<th>$G(D)$</th>
<th>$TC(\tilde{M})$</th>
<th>d_f</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3</td>
<td>3<sup>t</sup></td>
<td>[1 2 3; 6 1 3]</td>
<td>24.00</td>
<td>4</td>
<td>2,11,34,109,366</td>
</tr>
<tr>
<td>2/3</td>
<td>4<sup>t</sup></td>
<td>[1 3 8; 10 12 7]</td>
<td>48.00</td>
<td>5</td>
<td>4,17,54,192,681</td>
</tr>
<tr>
<td>3/4</td>
<td>3<sup>b</sup></td>
<td>[1 1 0; 0 3 1; 2 2 3 3]</td>
<td>21.33</td>
<td>4</td>
<td>29,0,532,0,10059</td>
</tr>
<tr>
<td>3/4</td>
<td>4<sup>t</sup></td>
<td>[1 1 2 3; 2 1 1 1; 4 6 4 1]</td>
<td>42.67</td>
<td>4</td>
<td>3,44,160,638,3558</td>
</tr>
<tr>
<td>3/5</td>
<td>3<sup>n</sup></td>
<td>[3 1 0 1 0; 0 3 3 2; 2 2 2 1 1]</td>
<td>26.67</td>
<td>4</td>
<td>1,5,11,38,112</td>
</tr>
<tr>
<td>3/5</td>
<td>4<sup>n</sup></td>
<td>[3 3 2 2 3; 2 3 3 1 0; 6 0 2 3 1]</td>
<td>53.33</td>
<td>6</td>
<td>15,0,136,0,1208</td>
</tr>
<tr>
<td>4/5</td>
<td>3<sup>t</sup></td>
<td>[1 1 1 1 0; 2 2 1 1 1; 2 2 0 2 3]</td>
<td>20.00</td>
<td>3</td>
<td>5,36,200,1065,5893</td>
</tr>
<tr>
<td>4/5</td>
<td>4<sup>b</sup></td>
<td>[3 1 1 1 0; 2 3 0 1 1; 2 2 3 1 0; 0 0 2 3 2]</td>
<td>40.00</td>
<td>4</td>
<td>30,126,815,4822,29046</td>
</tr>
<tr>
<td>4/7</td>
<td>3<sup>n</sup></td>
<td>[1 1 0 1 0 1 1 1; 2 1 1 1 0 1 0; 0 2 2 3 3 1 0; 2 2 2 0 0 1 1]</td>
<td>28.00</td>
<td>5</td>
<td>4,13,33,81,203</td>
</tr>
<tr>
<td>4/7</td>
<td>4<sup>n</sup></td>
<td>[3 1 0 1 1 0 1; 2 3 3 3 2 0 1; 2 2 2 1 1 1 0; 0 2 0 2 0 3 3]</td>
<td>56.00</td>
<td>6</td>
<td>8,27,46,143,380</td>
</tr>
<tr>
<td>5/6</td>
<td>3<sup>t</sup></td>
<td>[1 1 0 1 0 0; 0 1 1 0 1 0; 2 0 0 1 0 1; 2 2 2 0 1 1; 0 0 0 2 3]</td>
<td>19.20</td>
<td>3</td>
<td>15,96,601,3903,25325</td>
</tr>
<tr>
<td>5/6</td>
<td>4<sup>b</sup></td>
<td>[1 0 0 1 1 1; 2 1 1 1 0 0; 0 2 1 1 0 1; 2 2 2 1 1 1; 0 2 0 2 1 1]</td>
<td>38.40</td>
<td>4</td>
<td>111,0,5628,0,293724</td>
</tr>
<tr>
<td>5/7</td>
<td>3<sup>n</sup></td>
<td>[1 1 0 0 1 1 1; 0 1 1 1 1 0 0; 2 0 0 1 1 0 0; 2 2 2 0 1 0 0; 0 0 2 2 0 1 1]</td>
<td>22.40</td>
<td>4</td>
<td>15,55,174,798,3214</td>
</tr>
<tr>
<td>5/7</td>
<td>4<sup>b</sup></td>
<td>[1 1 0 0 1 1 1; 2 1 1 1 0 1; 2 2 2 1 0 0 1; 0 2 0 2 1 1 0; 2 0 0 0 2 1 1]</td>
<td>44.80</td>
<td>4</td>
<td>2,27,109,445,1955</td>
</tr>
</tbody>
</table>

^t Code found in [4], but with different $G(D)$; ^b Code listed in [2]; ⁿ New code found in this study by a random search.

Some good GPCCs are tabulated in Table I for different code rates R, and memory order ν of the corresponding PCC (which has the same $TC(\tilde{M})$ of the listed GPCC). The polynomial generator matrices $G(D)$ are shown in octal form with the highest power in D in the most significant bit of the representation (e.g. $6 \equiv D + D^2$). Table I shows several $(n-1,n)$ GPCCs with the same distance spectrum of the best $(n-1,n)$ codes listed in [4]. For other code rates, the new GPCCs shown in Table I have better distance spectrum than the corresponding PCCs [2] with the same trellis complexity.

IV. Conclusions

The trellis complexities considered in this paper were restricted to those of the PCCs in [2]. The codes listed in Table I only improved the distance multiplicity, however a whole bunch of more complex convolutional codes with greater d_f exist. The study of GPCCs with other code rates and various trellis complexities is a research topic currently being investigated by the authors. For example, by placing in (3) the leading and trailing 1’s in specific positions we found a (5,3) GPCC with $d_f = 5$ and distance spectrum $5,13,38,113,303,\ldots$, but with $TC(\tilde{M}) = 37.33$ symbols per bit.

References

