Access control in user hierarchy based on elliptic curve cryptosystem

Yu Fang Chung a, Hsiu Hui Lee b, Feipei Lai b,c, Tzer Shyong Chen d,*

a Information Management Department, Chaoyang University of Technology, Taiwan
b Computer Science and Information Engineering Department, National Taiwan University, Taiwan
c Electrical Engineering Department, National Taiwan University, Taiwan
d Information Management Department, Tunghai University, Taiwan

Received 16 May 2006; received in revised form 30 July 2007; accepted 1 August 2007

Abstract

This work proposes a novel key management method based on elliptic curve cryptosystem and one-way hash function to solve dynamic access problems in a user hierarchy. The proposed scheme attempts to derive the secret key of successors efficiently and non-redundantly. It includes functions such as insertion and removal of classes, updating of their relationships, and changing of secret keys. The method utilizes a Central Authority, which enables a user to change the secret key at will conveniently. Since the proposed method uses the elliptic curve cryptosystem which has a low computational cost and small key size, its performance in terms of both security and efficiency is quite commendable. Therefore, it can be anticipated that its use will be extended to wireless communication in the future.

Keywords: Key management; Elliptic curve cryptosystem; Access control; User hierarchy

1. Introduction

Computer cryptography and information security are of prior concern in the digital age. The accelerated growth of computer networks and technology favors environments that support multi-users in a hierarchy. Thus, sharing resources has become unavoidable, and both academic and industrial fields require approaches to protect information from unauthorized access.

Computer communication systems often employ user hierarchies to solve access control problems. A user hierarchy generally comprises disjointed security classes, to which users and user information are assigned and ranked. The security class of a user is known as his security clearance. Assume that \(SC_1, SC_2, \ldots, SC_n \) are \(n \) disjointed security classes. Let \(\geq \) denote a binary partially ordered relationship in a user set, \(SC = \{ SC_1, SC_2, \ldots, SC_n \} \). In the partially ordered set \((\text{poset}, SC, \geq) \), \(SC_i \geq SC_j \) denotes that the security class \(SC_i \) have...
a security clearance higher than or equal to the security class \(SC_j\). \(SC_i\) is classified as a predecessor of \(SC_j\), and \(SC_i\) as a successor of \(SC_j\). The predecessors \(SC_i\) have accessibility to information belonging to their successors \(SC_j\), but not vice versa. If there is no security class \(SC_k\) between \(SC_i\) and \(SC_j\), where \(SC_i \geq SC_k \geq SC_j\), then \(SC_i\) is known as an immediate predecessor of \(SC_j\), and \(SC_j\) is an immediate successor of \(SC_i\). Fig. 1 illustrates an example of the partially ordered set in a user hierarchy. The arrows linking the connected paths in an accessible net indicate the direction of access. A user at the end of an arrow can access the user at the head of the same arrow.

For \(SC_i \geq SC_j\), the data classified as \(SC_j\) is generally encrypted using the secret key \(sk_j\), and \(SC_i\) derives \(sk_j\) to access the data that belongs to \(SC_j\) using \(ski\). A predecessor needs to access the non-immediate successors by recursively storing the successors’ secret keys level by level. Following a growing hierarchy, the users of higher-clearance security classes need larger storage space to accommodate the secret keys of all successors, resulting in key management problems. Additionally, large numbers of keys make security management difficult. Another solution to the problem is developed, which is, to assign each user a unique secret key through which a user can calculate all his successors’ keys.

The cryptographic key assignment scheme is developed by Akl and Taylor [19]. In this model, each security class \(SC_i\) is assigned a public parameter \(T_i\) and a secret key \(ski\). The secret key is created as follows:

\[
ski = sk_0^{T_i} \pmod M
\]

where \(sk_0\) denotes the secret key of the Central Authority (called CA for brevity hereafter). \(M\) represents the product of a pair of secret large prime numbers, and \(T_i\) rises with the expansion of security classes. If \(SC_i \geq SC_j\), then \(T_j / T_i\) will be an integer so that a predecessor \(SC_i\) can derive \(sk_j\), as follows:

\[
skj = sk_0^{T_j} = sk_0^{T_j/T_i} = sk_1^{(T_j/T_i)} \pmod M
\]

If \(SC_j\) (not \(\leq\) \(SC_i\)), then \(T_j / T_i\) will not be an integer, and the key derivation fails.

For the case where \(T_i\) rises as the security classes expand, MacKinnon et al. [20] presented a canonical assignment scheme to lower the value of \(T_i\). Both AT’s and MacKinnon’s schemes utilize top-down traversal.
Harn and Lin [15] developed a bottom-up key generation method. Although these approaches succeed in decreasing the value of T_i, they have to update all existing secret keys to maintain security whenever the hierarchy changes.

Several key management schemes have been presented; for instance, the methods in [6,14,21] construct and derive the secure keys of all classes on the basis of discrete logarithm problems; the model in [17] uses the integer factorization problem to complete the construction and derivation of key. Attempts to improve dynamic access control problems were made in these schemes using different methods. These methods deal with the problems of inserting and removing security classes in a user hierarchy and the reduction of the size of public parameters. In these models, users with high security clearance apply repetitive key derivation processes to obtain the secret keys of non-immediate successors. Other methods [12,22] attempt to enhance AT’s scheme, and explore other possible approaches that can enable a user in a hierarchy to modify the secret key as necessary. Accordingly, a predecessor can directly and efficiently derive the secret keys of its successors.

Lin [7] found that deriving one key from another key might compromise the new key due to the disclosure of the old secret key. Furthermore, if the identities of two users belonging to two different security classes in the hierarchy are only slightly different, then one user can probably guess the key of the other.

Kuo et al. later developed a method [10] that employs the public key to encrypt the secret key. Their model has a straightforward key assignment algorithm, and small storage space requirement. It utilizes a one-way hash function $H(X)$, where X denotes an arbitrary-length input, and $H(X)$ is a fixed-length output. The hash function is the fingerprint of a file, a message, or other data blocks, and has the following attributes [8].

1. X can be applied to a data block of all sizes.
2. For any given variable X, $H(X)$ is easy to operate, enabling easy implementation in software and hardware.
3. The output length of $H(X)$ is fixed.
4. Deriving X from the given value h and the given hash function $H(X)$ is computationally infeasible.
5. For any given variable X, finding any $Y \neq X$ so that $H(Y) = H(X)$ is computationally infeasible.
6. Finding an input (X, Y) so that $H(X) = H(Y)$ is computationally infeasible.

The trade-off between security and efficiency in performance means that $H(X)$ can help obtain message digest.

Based on these related works [3–5,9,13,17], this work develops a security model that provides protection against external and internal attacks. The model can provide a simple and efficient solution to overcome the collision and the security leaks.

3. Proposed scheme

The proposed method has three sequential phases, namely the relationship building phase, the key generation phase, and the key derivation phase, all of which are described below.

3.1. Elliptic curve cryptosystem

To ensure high security and efficiency, the proposed method is established based on an elliptic curve cryptosystem. An elliptic curve cryptosystem can achieve security of equal level to the RSA or DSA in the discrete logarithm problems, and it has lower computation overhead and smaller key size. The mathematic background of elliptic curve cryptosystem [1,23] is defined below.

The elliptic curve cryptosystem employs the use of elliptic curves. The variables and coefficients of elliptic curves are all restricted to elements of a finite field, offering added efficiency in the operation of ECC. Two families of elliptic curves, prime curves defined over Z_p and binary curves constructed over $GF(2^n)$, are used in cryptographic applications. Fernandes [2] once pointed out, “prime curves are best for software applications because the extended bit-fiddling operations needed by binary curves are not required; and that binary curves are best for hardware application, where it takes remarkably few logic gates to create a powerful, fast cryptosystem”.

In this study, the applied elliptic curve over \(Z_p \), defined modulo a prime \(p \), is the set of solutions \((x, y)\) to the equation, \(E_p(a, b) : y^2 = x^3 + ax + b \pmod{p} \) where \(a, b \in \mathbb{Z}_p \), and \(4a^3 + 27b^2 \pmod{p} \neq 0 \). The condition \(4a^3 + 27b^2 \pmod{p} \neq 0 \) is necessary to ensure that \(x^3 + ax + b \pmod{p} \) has no repeated factors, which means that a finite abelian group can be defined based on the set \(E_p(a, b) \). The definition of an elliptic curve also includes a point at infinity denoted as \(O \), which is the third point of intersection of any straight line with the curve; such a line has points of intersection of the form \((x, y), (x, -y)\) and \(O \). Not any elliptic curve over \(Z_p \) can be applied in cryptographic applications. Fig. 2 [11] shows an example of the elliptic curve group, where the elliptic curve is defined by the equation, \(y^2 = x^3 + x + 1 \pmod{23} \) (taken from [23]).

The example depicted in Fig. 2 has \(a = 1 \) and \(b = 1 \) so that \(4a^3 + 27b^2 \pmod{23} \neq 0 \). Thus, the elliptic group \(E_{23}(1,1) \) consists of the points shown in Table 1, extracted from [23].

Addition operation has been used over \(E_p(a, b) \). For all points \(P, Q \in E_p(a, b) \), the rules for addition over \(E_p(a, b) \) are defined as follows:

1. \(P + O = P \), where \(O \) serves as the additive identity.
2. If \(P = (x_p, y_p) \), then \(P + (x_p, -y_p) = O \). The point \((x_p, -y_p) \) is the negative of \(P \), denoted as \(-P\). For example, in \(E_{23}(1,1) \), for \(P = (6,4) \), we have \(-P = (6, -4)\). Since \(-4 \pmod{23} \equiv 19 \), \(-P = (6, 19)\), which is also over \(E_{23}(1,1) \).
3. If \(P = (x_p, y_p) \) and \(Q = (x_q, y_q) \) with \(P \neq Q \), then \(R = P + Q = (x_r, y_r) \) is over \(E_{23}(1,1) \) and is determined by the following the rules:
 \[
 \begin{align*}
 x_r &= (\lambda^2 - x_p - x_q) \pmod{p} \\
 y_r &= (\lambda(x_p - x_r) - y_p) \pmod{p}
 \end{align*}
 \]
 where \(\lambda \) is given as shown below
 \[
 \lambda = \begin{cases}
 \frac{x_q - x_p}{y_q - y_p} \pmod{p}, & \text{if } P \neq Q \\
 \frac{3x_p^2 + a}{2y_p} \pmod{p}, & \text{if } P = Q
 \end{cases}
 \]
4. Multiplication by an integer is defined by repeated addition; for example, \(2P = P + P \).
Example. Let \(P = (6,4) \) and \(Q = (7,11) \) in \(E_{23}(1,1) \). When \(P \neq Q \), we must derive \(k \) before calculating \(P + Q \), as follows:

\[
\lambda = \left(\frac{11 - 4}{7 - 6} \right) \mod 23 \equiv 7
\]

So, when \(\lambda = 7 \), \(x_r \) and \(y_r \) can be derived as shown below. Thus, \(P + Q = (13,16) \).

\[
x_r = (7^2 - 6 - 7) \mod 23 \equiv -6 \mod 23 \equiv 13
\]

\[
y_r = (7(6 - 13) - 4) \mod 23 \equiv -53 \mod 23 \equiv 16
\]

To calculate \(2P \), we must first derive \(\lambda \) as follows:

\[
\lambda = \left(\frac{3(6^2) + 1}{2 \times 4} \right) \mod 23 \equiv \frac{109}{8} \mod 23 \equiv 5
\]

So, when \(\lambda = 7 \), \(x_r \) and \(y_r \) can be derived as shown below. Thus, \(2P = (13,7) \).

\[
x_r = (5^2 - 6 - 6) \mod 23 \equiv 13 \mod 23 \equiv 13
\]

\[
y_r = (5(6 - 13) - 4) \mod 23 \equiv -39 \mod 23 \equiv 7
\]

The addition operation in ECC is the counterpart of modular multiplication in RSA, and multiplication in ECC is the counterpart of modular exponentiation in RSA. A difficult problem is essential to creating a cryptographic system using elliptic curves over \(\mathbb{Z}_p \). Consider the equation \(Q = kP \), where \(Q, P \in E_p(a,b) \) and \(k < p \).

Given \(k \) and \(P \), it is relatively easy to calculate \(Q \), but given \(Q \) and \(P \), it is relatively hard to determine \(k \). This is called the elliptic curve discrete logarithm problem (ECDLP) \[1,16,23\].

Given an example taken from [23], suppose \(E_{23}(9,17) \) is an elliptic curve defined by \(y^2 = x^3 + 9x + 17 \) (mod 23). Find the discrete logarithm \(k \) of \(Q = (4,5) \) to the base \(P = (16,5) \). One solution is the brute-force method, in which multiples of \(P \) is computed until \(Q \) is found. Thus, \(P = (16,5) \), \(2P = (20,20) \), \(3P = (14,14) \), \(4P = (19,20) \), \(5P = (13,10) \), \(6P = (7,3) \), \(7P = (8,7) \), \(8P = (12,17) \), \(9P = (4,5) \).

Because \(9P = (4,5) = Q \), the discrete logarithm to the base \(P \) is \(k = 9 \). But in the real implementation, the brute-force method is quite infeasible as \(p \) and \(k \) would be so large that the method would not be viable.

Apparently, the efficiency of ECC depends on the fast calculation of \(Q = kP \) for some number \(k \) and a point \(P \) on the curve. The addition of elliptic curve points requires a few modular calculations. As shown in [23], ECC can have a prime \(p \) that is much smaller than the numbers in the other types of systems. This allows for significant improvement in efficiency in the operation of ECC over both integer factorization and discrete logarithm systems.

3.2. Relationship building phase

First, establish the Central Authority to specialize in system and member maintenance. In this phase, \(CA \) builds the hierarchical structure for controlling access according to the relationships between the nodes. Suppose there are \(n \) members which together form a set denoted as \(\mathcal{U} = \{ SC_1, SC_2, \ldots, SC_n \} \). Let \(SC_i \) be a security class with higher clearance and \(SC_j \) a security class with lower clearance. If there is a legitimate relationship between \(SC_i \) and \(SC_j \) such that \(SC_i \) can access \(SC_j \), then this relationship can be represented as \((SC_i, SC_j) \in R_{i,j} \).
3.3. Key generation phase

To complete the key generation phase, CA executes the algorithm below.

Step 1: randomly select a large prime \(p \)
Step 2: select an elliptic curve \(E \) defined over \(\mathbb{Z}_p \), where the order of \(E \) is located in the interval between \([p + 1 - 2\sqrt{p}, p + 1 + 2\sqrt{p}] \)
Step 3: select a one-way function \(h(x) \) to transform a point into a number and a base point \(G_j \) from \(E(\mathbb{Z}_p) \), where \(j = 1, \ldots, n \)
Step 4: select a secret key \(sk_j \) and a sub-secret key \(s_j \) for \(SC_j \), where \(j = 1, \ldots, n \)
Step 5: for all \(\{SC_i(SC_i, SC_j)\} \in R_{i,j} \)
\quad determine \(s_iG_j = (x_{j,i}, y_{j,i}) \)
\quad determine \(h(x_{j,i}, y_{j,i}) \) using the one-way hash function, where \(|| \) is a bit concatenation operator
end for
Step 6: determine the public polynomial \(f_j(x) \) using \(h(x_{j,i}, y_{j,i}) \) as follows
\[
f_j(x) = \prod_{SC_i \neq SC_j} [x - h(x_{j,i}, y_{j,i})] + sk_j \pmod{p}
\]
Step 7: send \(sk_j \) and \(s_j \) to the security class \(SC_j \) via a secret channel, and announce \(p, h(x), G_i, \) and \(f_j(x) \)

Example. As shown in Fig. 1, the user set has six security classes, denoted as \(U = \{SC_1, SC_2, SC_3, SC_4, SC_5, SC_6\} \). CA determines the public elliptic curve polynomial \(f_j(x) \) for each security class. Each security class can then derive the secret keys of his successors, as follows:

\[
f_j(x) = \prod_{SC_i \neq SC_j} [x - h(x_{j,i}, y_{j,i})] + sk_j \pmod{p}
\]

\(SC_1 : f_1(x) = [x - h(x_{1,0}, y_{1,0})] + sk_1 \pmod{p}, \) where \(s_0 \) is given by CA

\(SC_2 : f_2(x) = [x - h(x_{2,1}, y_{2,1})] + sk_2 \pmod{p} \)

\(SC_3 : f_3(x) = [x - h(x_{3,1}, y_{3,1})] + sk_3 \pmod{p} \)

\(SC_4 : f_4(x) = [x - h(x_{4,1}, y_{4,1})][x - h(x_{4,2}, y_{4,2})] + sk_4 \pmod{p} \)

\(SC_5 : f_5(x) = [x - h(x_{5,1}, y_{5,1})][x - h(x_{5,2}, y_{5,2})][x - h(x_{5,3}, y_{5,3})] + sk_5 \pmod{p} \)

\(SC_6 : f_6(x) = [x - h(x_{6,1}, y_{6,1})][x - h(x_{6,2}, y_{6,2})] + sk_6 \pmod{p} \)

3.4. Key derivation phase

For the relationship \((SC_i, SC_j) \in R_{i,j} \) between \(SC_i \) and \(SC_j \), the predecessor \(SC_i \) calculates the secret keys \(sk_j \) of all successors, \(SC_j \) as follows:

Step 1: for \(\{SC_i(SC_i, SC_j)\} \in R_{i,j} \)
\quad determine \(s_iG_j = (x_{j,i}, y_{j,i}) \)
\quad determine \(h(x_{j,i}, y_{j,i}) \) using the one-way hash function, where \(|| \) is a bit concatenation operator
end for
Step 2: determine \(sk_j \) using \(h(x_{j,i}, y_{j,i}) \) as follows
\[
f_j(x) = \prod_{SC_i \neq SC_j} [x - h(x_{j,i}, y_{j,i})] + sk_j \pmod{p}
\]
\[
f_j(h(x_{j,i}, y_{j,i})) = sk_j \pmod{p}
\]
4. Solution to key management of dynamic access problems

After establishing the protocol to generate and derive keys in a hierarchy, the solution to dynamic key management problems such as inserting a new security class, removing an existing security class, creating a new relationship, revoking an existing relationship, and changing secret keys is given as shown below.

4.1. Inserting new security classes

Assume that a new security class \(SC_k \) is inserted into the hierarchy such that \(SC_i \geq SC_k \geq SC_j \); the relationship \(SC_i \geq SC_k \) is given as \((SC_i, SC_k) \in R_{i,k} \) and the relationship \(SC_k \geq SC_j \) is denoted as \((SC_k, SC_j) \in R_{k,j} \). CA follows the procedure below to manage the accessing priority of \(SC_k \) in the hierarchy.

Step 1: update the partial relationship \(R \) that follows when \(SC_k \) joins the hierarchy

- Step 2: randomly select \(sk_k \), \(s_k \), and \(G_k \)
- Step 3: for all \(\{SC_i|(SC_i, SC_k)\} \in R_{i,k} \) that satisfies \(SC_i \geq SC_k \) while inserting the new security class \(SC_k \)
 - determine \(s_iG_k = (x_{i,k},y_{i,k}) \)
 - determine \(h(x_{i,k},y_{i,k}) \) using the one-way hash function, where \(\| \) is a bit concatenation operator
 - end for

Step 4: determine the public polynomial \(f_k(x) \) using \(h(x_{i,k},y_{i,k}) \) as follows

\[
f_k(x) = \prod_{SC_i \geq SC_k} [x - h(x_{i,k},y_{i,k})] + sk_k \mod p
\]

Step 5: for all \(\{SC_i|(SC_i, SC_k)\} \in R_{i,k} \) and \(\{SC_k|(SC_k, SC_j)\} \in R_{k,j} \) that satisfy \(SC_i \geq SC_k \geq SC_j \)

- determine \(s_iG_j = (x_{j,k},y_{j,k}) \)
- determine \(s_jG_j = (x_{j,k},y_{j,k}) \)
- determine \(h(x_{j,k},y_{j,k}) \) and \(h(x_{i,k},y_{i,k}) \) using the one-way hash function, where \(\| \) is a bit concatenation operator
 - end for

Step 6: determine the public polynomial \(f'_j(x) \) using \(h(x_{j,k},y_{j,k}) \) and \(h(x_{i,k},y_{i,k}) \) as follows

\[
f'_j(x) = \prod_{SC_i \geq SC_k \geq SC_j} [x - h(x_{j,k},y_{j,k})][x - h(x_{i,k},y_{i,k})] + sk_j \mod p
\]

Step 7: replace \(f_k(x) \) with \(f'_j(x) \)

Step 8: send \(sk_k \) and \(s_k \) to \(SC_k \) via a secret channel, and announce \(G_k, f_k(x) \) and \(f'_j(x) \)

Example. In Fig. 3, a new security class \(SC_7 \) is inserted into the user hierarchy such that \(SC_1 \geq SC_7 \geq SC_6 \). For \(SC_7 \), CA randomly selects \(sk_7, s_7 \), and \(G_7 \). Since \(SC_7 \) is assigned as a successor to \(SC_1 \) and as a predecessor to \(SC_6 \), CA constructs the public polynomial \(f_7(x) \), and replaces the public polynomial \(f_6(x) \) with \(f'_6(x) \). CA first calculates \(h(x_{7,1},y_{7,1}) \) with the help of the sub-secret key \(s_1 \) to construct \(f_7(x) \); then determines \(h(x_{6,7},y_{6,7}) \) using the sub-secret key \(s_7 \) to derive \(f'_6(x) \). Finally, CA transmits \(sk_7 \) and \(s_7 \) to \(SC_7 \) via a secret channel and announces \(G_7, f_7(x) \), and \(f'_6(x) \).

Fig. 3. The consequent poset after inserting \(SC_7 \).
Before SC_7 joins the hierarchy, the public polynomial $f_6(x)$ is formed as follows:

$$f_6(x) = [x - h(x_{6,1}||y_{6,1})][x - h(x_{6,3}||y_{6,3})] + sk_6 \mod p$$

After SC_7 joins the hierarchy, the public polynomials $f'_6(x)$ and $f_7(x)$ are formed as follows:

$$f'_6(x) = [x - h(x_{6,1}||y_{6,1})][x - h(x_{6,3}||y_{6,3})][x - h(x_{6,7}||y_{6,7})] + sk_6 \mod p$$

$$f_7(x) = [x - h(x_{7,1}||y_{7,1})] + sk_7 \mod p$$

4.2. Removing existing security classes

Assume that an existing member SC_k is to be removed from a user hierarchy, such that the relationship $SC_i \geq SC_k \geq SC_j$ breaks up. CA not only directly revokes information related to SC_k, but also alters the accessing relationship between the involved ex-predecessor SC_i and ex-successor SC_j, of SC_k. In particular, to control the forward security of SC_j, CA needs to renew the secret key sk_j as sk'_j, the base point G_j as G'_j, and the public polynomial $f_j(x)$ as $f'_j(x)$, as follows:

Step 1: update the partial relationship R that follows when SC_k is removed

Step 2: for all $\{SC_k | (SC_k, SC_j) \in R_{k,j}\}$

- renew the secret key sk_j as sk'_j and the base point G_j as G'_j, of SC_j

 for all $\{SC_j | (SC_k, SC_j) \in R_{k,j}\}$

- renew $\{SC_j | (SC_{i'}, SC_j) \in R_{i',j}\}$ after removing SC_k

 determine $s_i G'_i = (x_{i,j}, y_{i,j})$

 determine $h(x_{j,i}||y_{j,i})$ using the one-way hash function, where $||$ is a bit concatenation operator

end for

end for

determine the public polynomial $f'_j(x)$ as follows

$$f'_j(x) = \prod_{SC_i \geq SC_j} [x - h(x_{i,j}||y_{i,j})] + sk'_j \mod p$$

replace $f_j(x)$ with $f'_j(x)$

end for

Step 3: send sk'_j to SC_j via a secret channel, and announce G'_j and $f'_j(x)$

Example. For instance, considering Fig. 4, let SC_3 be removed from the poset, so that the relationships $SC_1 \geq SC_3 \geq SC_5$ and $SC_1 \geq SC_3 \geq SC_6$ break up. To revoke the accessibility of SC_3, CA removes all parameters related to SC_3, and updates the relationships among the relative predecessors and successors on the connected path, such as SC_1 and SC_6. To ensure forward security of the successor SC_6, CA renews the secret key sk_6 as sk'_6 and the base point G_6 as G'_6. Then, CA identifies all predecessors of SC_6, namely SC_1 in Fig. 4; determines $h(x_{6,1}||y_{6,1})$ using the sub-secret key s_1 and G'_6, and builds the newly available polynomial $f'_6(x)$. The same procedure is then executed on other successors involved on the connected path, namely SC_5. After completing all renewals, CA transmits sk'_5 to SC_5 and sk'_6 to SC_6 through a secret channel and announces G'_5, G'_6, $f'_5(x)$, and $f'_6(x)$.

![Diagram](image-url)
Before deleting \(SC_3 \), \(f_5(x) \) and \(f_6(x) \) are formed as shown below.

\[
f_5(x) = [x - h(x_{5,1}\|y_{5,1})][x - h(x_{5,2}\|y_{5,2})][x - h(x_{5,3}\|y_{5,3})] + sk_5 \mod p
\]

\[
f_6(x) = [x - h(x_{6,1}\|y_{6,1})][x - h(x_{6,2}\|y_{6,2})] + sk_6 \mod p
\]

After deleting \(SC_5 \), \(f'_5(x) \) and \(f'_6(x) \) are formed as shown below.

\[
f'_5(x) = [x - h(x_{5,1}\|y_{5,1})][x - h(x_{5,2}\|y_{5,2})] + sk'_5 \mod p
\]

\[
f'_6(x) = [x - h(x_{6,1}\|y_{6,1})] + sk'_6 \mod p
\]

4.3. Creating new relationships

The relationships among members in an organization might be changeable. For instance, a new relationship \(SC_k \geq SC_l \) might be added such that \(SC_i \geq SC_k \geq SC_j \). Notably, the relationship between \(SC_k \) and \(SC_j \) is immediate. \(CA \) performs the following procedure to link the relationships between \(SC_l \) and his predecessors (\(SC_k, SC_j \)), and the relationships between \(SC_j \) and his predecessors (\(SC_k, SC_i, SC_j \)).

Step 1: save the partial relationship \(SC_i \geq SC_k \geq SC_l \) formed due to the creation of \(SC_k \geq SC_l \)
Step 2: for all \(SC_i \geq SC_j \)
 if \(\{SC_i\}(SC_k,SC_j) \in R_{i,j} \) does not hold until \(SC_k \geq SC_l \) is created such that \(SC_i \geq SC_k \geq SC_j \)
 determine \(s_iG_i = (x_{i,l},y_{i,l}) \)
 determine \(s_kG_i = (x_{k,j},y_{k,j}) \)
 determine \(h(x_{l,i}\|y_{l,i}) \) and \(h(x_{l,k}\|y_{l,k}) \) using the one-way hash function, where \(|| \) is a bit concatenation operator
 end if
end for
Step 3: determine the public polynomial \(f_i(x) \) as follows

\[
f_i(x) = \prod_{SC_i \geq SC_j} [x - h(x_{l,i}\|y_{l,i})][x - h(x_{l,k}\|y_{l,k})] + sk_i \mod p
\]

Step 4: for all \(SC_i \geq SC_j \)
 if \(\{SC_i\}(SC_i,SC_j) \in R_{i,j} \) do not hold until \(SC_k \geq SC_l \) is created such that \(SC_i \geq SC_k \geq SC_j \)
 for all \(\{SC_i\}(SC_i,SC_j) \) \(\in R_{i,j} \)
 determine \(s_iG_j = (x_{j,i},y_{j,i}) \)
 determine \(s_kG_j = (x_{k,j},y_{k,j}) \)
 determine \(s_lG_j = (x_{l,j},y_{l,j}) \)
 determine \(h(x_{j,i}\|y_{j,i}), h(x_{j,k}\|y_{j,k}), h(x_{l,i}\|y_{l,i}) \), where \(|| \) is a bit concatenation operator
 end if
end for
Step 5: determine the public polynomial \(f'_j(x) \) as follows

\[
f'_j(x) = \prod_{SC_i \geq SC_j} [x - h(x_{j,i}\|y_{j,i})][x - h(x_{j,k}\|y_{j,k})][x - h(x_{l,i}\|y_{l,i})] + sk_j \mod p
\]

Step 6: replace \(f_j(x) \) with \(f'_j(x) \)
Step 7: announce \(f_j(x) \) and \(f'_j(x) \)

Example. Fig. 5 displays the creation of a relationship between \(SC_5 \) and \(SC_6 \) such that \(SC_2 \geq SC_5 \geq SC_6 \), making \(SC_5 \) a new predecessor of \(SC_6 \). To authorize access to \(SC_5 \) from \(SC_6 \), \(CA \) calculates \(h(x_{6,5}\|y_{6,5}) \) with \(s_5 \) and \(h(x_{6,2}\|y_{6,2}) \) with \(s_2 \) to build the public polynomial \(f_6(x) \) using previously obtained parameters \(h(x_{6,1}\|y_{6,1}) \) and \(h(x_{6,5}\|y_{6,5}) \).
Before creating the relationship $SC_2 \geq SC_5 \geq SC_6$, $f_6(x)$ is formed as follows:

$$f_6(x) = [x - h(x_{6,1}||y_{6,1})][x - h(x_{6,3}||y_{6,3})] + sk_6 \mod p$$

After creating the relationship $SC_2 \geq SC_5 \geq SC_6$, $f'_6(x)$ is formed as follows:

$$f'_6(x) = [x - h(x_{6,1}||y_{6,1})][x - h(x_{6,3}||y_{6,3})][x - h(x_{6,2}||y_{6,2})][x - h(x_{6,5}||y_{6,5})] + sk'_6 \mod p$$

4.4. Revoking existing relationships

Consider the case of revoking an existing relationship $(SC_k, SC_l) \in R_{k,l}$. In addition to directly deleting the relationship, CA updates the accessibility of SC_k over SC_l for controlling the forward security of the ex-suc-

cessor SC_l. Restated, CA renews the secret key sk_j as sk'_l, the base point G_l as G'_l, and $f_l(x)$ as $f'_l(x)$, related to SC_l. CA follows the following procedure to revoke an existing relationship.

Step 1: revoke the partial relationship R due to the deletion of $(SC_k, SC_l) \in R_{k,l}$

Step 2: renew the secret key sk_j as sk'_l and the base point G_l as G'_l, related to SC_l

Step 3: for all $\{SC_l\}((SC_i, SC_j)) \in R_{i,j}$ that holds after revoking $(SC_k, SC_l) \in R_{k,l}$

determine $s_iG'_l = (x_{i,j}, y_{i,j})$

determine $h(x_{i,j}||y_{i,j})$ using the one-way hash function, where $||$ is a bit concatenation operator

Step 4: determine the public polynomial $f'_l(x)$ using $h(x_{i,j}||y_{i,j})$ as follows

$$f'_l(x) = \prod_{SC_j \geq SC_l} [x - h(x_{j,i}||y_{j,i})] + sk'_l \mod p$$

Step 5: for all $\{SC_k\}((SC_k, SC_l)) \in R_{k,l}$

if $\{SC_k\}((SC_k, SC_l)) \in R_{k,l}$ breaks up after revoking $(SC_k, SC_l) \in R_{k,l}$

renew the secret key sk_j as sk'_l and the base point G_l as G'_l, related to SC_j

for all $\{SC_j\}((SC_i, SC_j)) \in R_{i,j}$

determine $s_iG'_l = (x_{i,j}, y_{i,j})$

determine $h(x_{i,j}||y_{i,j})$ and $h(x_{j,i}||y_{j,i})$, where $||$ is a bit concatenation operator

end for

renew the public polynomial $f'_j(x)$ as follows

$$f'_j(x) = \prod_{SC_j \geq SC_l} [x - h(x_{j,i}||y_{j,i})][x - h(x_{j,i}||y_{j,i})] + sk'_j \mod p$$

end if

end for

Step 6: send the sk'_l to SC_l and sk'_j to SC_j via a secret channel, and announce $f'_l(x)$, $f'_j(x)$, G_l, and G'_l

Example. Consider the revoking of relationship $\{SC_2\}((SC_2, SC_3)) \in R_{2,5}$ in Fig. 6, such that $\{SC_2\}((SC_2, SC_3)) \notin R_{2,5}$.

![Fig. 5. The consequent poset after creating SC5 ≥ SC6.](image-url)
Because \(\{SC_2|\{SC_2,SC_3\}\} \in R_{2,5} \) does not hold, CA renews the secret key \(sk_5 \) as \(sk'_5 \), the base point \(G_5 \) as \(G'_5 \), and the public polynomial \(f_5(x) \) as \(f'_5(x) \), related to \(SC_5 \).

Before revoking \(\{SC_2|\{SC_2,SC_3\}\} \in R_{2,5} \), \(f_5(x) \) is formed as follows:
\[
 f_5(x) = \left[x - h(x_{5,1}||y_{5,1}) \right] \left[x - h(x_{5,2}||y_{5,2}) \right] \left[x - h(x_{5,3}||y_{5,3}) \right] + sk_5 \mod p
\]

After revoking \(\{SC_2|\{SC_2,SC_3\}\} \in R_{2,5} \), \(f_5(x) \) is replaced with \(f'_5(x) \) as follows:
\[
 f'_5(x) = \left[x - h(x_{5,1}||y_{5,1}) \right] \left[x - h(x_{5,3}||y_{5,3}) \right] + sk'_5 \mod p
\]

4.5. Changing secret keys

A secret key must be changeable to maximize security. To change a secret key \(sk_j \) to \(sk'_j \), CA must replace the base point \(G_j \) with \(G'_j \) and the public polynomial \(f_j(x) \) with \(f'_j(x) \), as follows:

1. **Step 1:** replace the secret key \(sk_j \) with \(sk'_j \) and the base point \(G_j \) with \(G'_j \)
2. **Step 2:** for all \(\{SC_i|\{SC_i,SC_j\}\} \in R_{ij} \)
 - determine \(s_iG'_j = (x_{j,i},y_{j,i}) \)
 - determine \(h(x_{j,i}||y_{j,i}) \), where \(|| \) is a bit concatenation operator
3. **Step 3:** determine the public polynomial \(f'_j(x) \) as follows
\[
 f'_j(x) = \prod_{SC_i \geq SC_j} \left[x - h(x_{j,i}||y_{j,i}) \right] + sk'_j \mod p
\]
4. **Step 4:** replace \(f_j(x) \) with \(f'_j(x) \)
5. **Step 5:** send \(sk'_j \) to \(SC_j \) via a secret channel, and announce \(G'_j \) and \(f'_j(x) \)

5. Discussion of security

This section addresses the possible types of attacks. Security tolerance of the proposed model in response to the various attacks is discussed in the following subsections.

5.1. Contrary attack

The first potential attack is from a successor, who might wish to obtain the secret key of the immediate or any prior predecessor through the public parameters and his own secret key. That is, can a successor \(SC_j \) compute the predecessor’s secret key from the public polynomial \(f_j(x) \) and the one-way hash function \(h(x_{j,i}||y_{j,i}) \)? The unauthorized user can generally solve this problem by the given plaintext. However, both the elliptic curve cryptosystem and the one-way hash function can resist forced attack in the proposed approach because their time complexity is placed at reasonable computational security. An unauthorized successor cannot obtain the secret key even after years of attempting. Hence, the proposed scheme is highly secure against such an attack.
5.2. Exterior collecting attack

The second potential attack is from an outsider. Can an intruder generate the secret key from a lower security class by accessible public parameters? In addition to deriving both the elliptic curve cryptosystem and the one-way hash function, the invader must successfully launch a ciphertext attack against the asymmetric cryptosystem. A ciphertext attack against an asymmetric cryptosystem is much harder than a plaintext attack against an asymmetric cryptosystem. Therefore, the proposed model resists intrusion from outsiders.

5.3. Collaborative attack

The collaborative attack is a type of attack where several users collaborate to launch the attack. Suppose SC_j and SC_k are the immediate successors of SC_i; their relationship can be denoted as $(SC_i, SC_j) \in R_{i,j}$ and $(SC_i, SC_k) \in R_{i,k}$, as shown in Fig. 7.

When SC_j and SC_k collaborate to try to hack the secret key sk_i of SC_i, first, SC_j and SC_k must exchange secret keys with each other, and then derive the sub-secret key s_i of SC_i through $f_j(x)$ and $f_k(x)$.

$$f_j(x) = \prod_{SC_i \neq SC_j} [x - h(x_{j,i}||y_{j,i})] + sk_j \mod p$$

$$f_k(x) = \prod_{SC_i \neq SC_k} [x - h(x_{k,i}||y_{k,i})] + sk_k \mod p$$

However, s_i is protected by the one-way hash function and the ECDLP among which one-way hash function is irreversible while the ECDLP is computationally extremely complex. Therefore, attackers cannot invert the procedure to derive s_i.

5.4. Equation attack

This is a type of attack where a member uses the common successor to try to hack the secret key of another member it does not have an accessibility relationship with, like those shown in Fig. 8. For the relationships $SC_i \supseteq SC_j$ and $SC_k \supseteq SC_i$, SC_i may try to obtain the sub-secret key sk_i of SC_k through $f_j(x)$.

Taking Fig. 1 as example, aimed at the relationships $SC_2 \supseteq SC_3$ and $SC_3 \supseteq SC_5$, SC_2 may attempt to obtain s_3 through their common successor SC_5. Using $s_1G_5 = (x_{5,1}, y_{5,1})$, $s_2G_5 = (x_{5,2}, y_{5,2})$, and $s_3G_5 = (x_{5,3}, y_{5,3})$, $f_5(x)$ can be formed as follows:

$$f_5(x) = [x - h(x_{5,1}||y_{5,1})][x - h(x_{5,2}||y_{5,2})][x - h(x_{5,3}||y_{5,3})] + sk_5 \mod p$$

$$f_5(x) - sk_5 = [x - h(x_{5,1}||y_{5,1})][x - h(x_{5,2}||y_{5,2})][x - h(x_{5,3}||y_{5,3})] \mod p$$

$$x - h(x_{5,3}||y_{5,3}) = [f_5(x) - sk_5]/[x - h(x_{5,1}||y_{5,1})][x - h(x_{5,2}||y_{5,2})] \mod p$$

Let $x = 0$, then $h(x_{5,3}||y_{5,3}) = [sk_5 - f_5(0)]/[h(x_{5,1}||y_{5,1})][h(x_{5,2}||y_{5,2})] \mod p$

The derivation of hacking s_5 from $f_5(x)$ is based on the difficulty of solving one-way hash function and ECDLP, which is of reasonable computational security.

5.5. Forward security of the successors while changing $SC_i \supseteq SC_k \supseteq SC_j$ to $SC_i \supseteq SC_j$

Modifying the relationship $SC_i \supseteq SC_k \supseteq SC_j$ to $SC_i \supseteq SC_j$ annuls the accessibility authority of SC_k over SC_j. The forward security of the existing security class SC_j should be considered seriously. CA not only deletes...
the accessibility-link relationship, but also updates the accessibility-link relationship between \(SC_i \) and \(SC_j \). \(CA \) replaces the secret key \(sk_j \) with \(sk'_j \) and the base point \(G_j \) with \(G'_j \), and thus computes the renewed public polynomial \(f'_j(x) \) which no longer includes the factor \(h(x_k,i|x_k,j) \). The authority of \(SC_k \) over \(SC_j \) is thus terminated, so \(SC_k \) cannot later determine the secret key \(sk_j \) of \(SC_j \).

6. Analysis of performance

Table 2 analyzes the proposed approach in comparison to other methods in terms of the required complexity for processing dynamic access control problems, in which Chang denotes the model in [6], Wu represents that in [14], and Hwang is that in [17]. The analysis in Table 2 clearly reveals that the proposed method is more straightforward than the other ones, and also requires less storage space.

Table 2 shows functional comparisons between the presented scheme and other previously proposed ones. In terms of storage size, both Hwang’s and Wu’s schemes require large storage space. In these schemes, the number of public parameters and the length of the public parameters grow as the number of successor increases, so the required storage space too gets increasingly larger. As for Chang’s scheme, it is similar to the scheme proposed in this study. Each class has only one fixed public parameter that needs to be stored. In terms of dynamic access control problem, all four schemes need only make partial update to information when inserting and deleting security classes, creating and revoking relationship, and changing security key.

On computational complexity, key generation and key derivation requires executing elliptic curve addition operations, hash operations and constructing interpolating polynomials. In terms of computational overheads, Vanstone [18] had summarized that the key sizes and bandwidth required by ECC provides higher efficiency with order of magnitude roughly 10 times that of integer factorization systems and discrete logarithm systems. Besides, Stallings [23] estimated that the 4096-bit key size of the RSA gives the same level of security as the 313-bit one in ECC. That is, the length of the prime \(p \) in \(E_p(a,b) \) is secure enough with 300 bits.

The storage required for the polynomials \(f_i(x) \) is proportional to the number of successors a security class is assigned. The length of the prime \(p \) is 300 bits such that the coefficients of the polynomial are defined over \(p \). Let \(m \) be the degree of \(f_i(x) \); then the storage occupies about \(m|\log p + 1| \) bits. In integer factorization systems or discrete logarithm systems, the chosen prime should be of at least 100 decimal digits to provide sufficient security.

Table 2

<table>
<thead>
<tr>
<th>Performance analysis in terms of complexity for access control problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required complexity</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Key generation</td>
</tr>
<tr>
<td>Key derivation</td>
</tr>
<tr>
<td>Inserting/removing security classes</td>
</tr>
<tr>
<td>Creating/revoking relationships</td>
</tr>
<tr>
<td>Changing secret keys</td>
</tr>
<tr>
<td>Storage for public parameters</td>
</tr>
</tbody>
</table>
As to constructing an interpolating polynomial, Knuth [8] completed it with a computation time of $O(m(\log m)^2)$. The overall computational complexity of establishing and updating the polynomials is $O(nm(\log m)^2)$, where n is the number of security classes in the hierarchy.

7. Conclusions

The proposed key management method for controlling dynamic access problems is a simple and efficient solution for ensuring hierarchical organization. It allows the access of members to data to be classified according to their ranks. Members in higher-ranked security class can directly access the secret keys of members in lower-ranked classes, but not vice versa. The members can change the secret keys at will in consideration of security, showing that the key generation and public polynomial are flexible.

References